Supporting Information

Construction of unique two-dimensional MoS₂-TiO₂ hybrid nanosheets: MoS₂ as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO₂ into methanol

Wenguang Tu,^{+, a, b, c} Yichang Li,^{+, a, b, c} Libang Kuai,^{+, a, b, c} Yong Zhou,^{*, a, b, c} Qinfeng Xu,^{b, d} Haijin Li,^{b, c, e}

Xiaoyong Wang,^b Min Xiao,^b and Zhigang Zou^{*, b, c}

^aLaboratory of Modern Acoustics, MOE, Institute of Acoustics, School of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China

E-mail: zhouyong1999@nju.edu.cn

^bNational Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China

E-mail: zgzou@nju.edu.cn

^cEcomaterials and Renewable Energy Research Center (ERERC), Nanjing University,

22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China

^dDepartment of Physics and Optoelectronic Engineering, Ludong University, Yantai

264025, P. R. China

^eSchool of Mathematics and Physics, Institute of Optoelectronic Information Materials and Technology, Anhui University of Technology Ma'anshan, Anhui 243002, P. R.China

[+] These authors contributed equally to this work.

Fig.S1 High-resolution XPS spectra of (a) Mo 3d and (b) S 2p in 0.5wt% MoS₂/TiO₂ hybrid nanosheets.