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Hydrodynamic Drag Correction 

The hydrodynamic drag force opposes the motion of a body through a fluid. This 

hydrodynamic drag force Fdrag in the absence of turbulence (Reynold Number Re < 1) can 

be approximated by  

       (S.1)𝐹𝑑𝑟𝑎𝑔 =‒  𝑏 𝑣

where b is a damping factor and v is the cantilever speed. For our complex set up, the 

damping factor is an empirical feature which depends on the cantilever and sample shape.

Fig. S1 shows an example of force-distance curves before being corrected by the 

hydrodynamic effect. This hydrodynamic drag introduces an effective repulsive force 

during the approach and an effective attractive force during the retraction. This effect 

increases with the modulation frequency.

Fig. S1. Force distance curves on a cell for different modulation frequencies. (a)-(c), 
Representative examples of uncorrected force-distance curves for three modulation 
frequencies. With increasing frequency, the baselines corresponding to the approach and 
retraction separate. This is the hydrodynamic drag effect. 
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Fig. S2 illustrates the method to correct the hydrodynamic drag. First, we have calculated 

the difference between the approach and withdraw force baselines (Fig. S2a). The half of 

this value represents the drag force. 

          (S.2)
|𝐹𝑑𝑟𝑎𝑔| =

𝐹1 ‒ 𝐹2

2

Finally, the value of the drag force (|Fdrag|) is subtracted from the original section of the 

force curve in the approach and added to the original section of the force curve in the 

retraction (Fig. S2b). The tails of the approach and retraction sections of the force-distance 

overlap once the drag force has been suppressed.

Fig. S2. (a) Force-distance curve on a cell for a modulation frequency of 4 Hz. Far from 
the cell surface there is a significant separation between approach and retraction sections. 
(b) Corrected force-distance curve by applying the method described in the text. 
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Fig. S3. Force distance curves on a cell for different modulation frequencies. (a)-(c), 
Representative examples of force-distance curves affected by drag effects after being 
corrected.

To determine the damping factor b of eqn (S.1) we have plotted the drag force with 

respect to the tip’s speed (modulation frequency) (Fig. S4). After fitting the experiment 

data on Fig. S4 to a straight line, we have obtained a value of b = 1.8 ± 0.2 Kg/s.
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Fig. S4. Drag force as function of the frequency. The red line represents the linear fitting 
obtained applying a less square method.

General Kelvin-Voight equivalency

The Kelvin-Voight model has been used to obtain the viscoelastic parameters. However, 

this approximation does not restrict the generality of the method because it can be 

demonstrated that any one-dimensional linear viscoelastic system, modulated at a fixed 

frequency, can be approximated by a Kelvin-Voigt system.

To show that, we recall that the force in a linear system is the convolution of the 

velocities and the load relaxation function of that system:

                   (S.3)
𝐹(𝑡) =  

𝑡

∫
0

𝜓(𝑡 ‒ 𝑡') 
𝑑

𝑑𝑡'
[𝑥 (𝑡')]𝑑𝑡'
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By applying the Fourier transform to this expression and the property which states that 

the Fourier transform of the convolution of two functions is the product of the Fourier 

transforms of such functions, eqn (S.3) can be transformed into

       (S.4)�̂�(𝜔) = �̂� (𝜔) ∙ 𝑖𝜔·𝑥 (𝜔)

The above expression is valid for any linear viscoelastic system such Standard Linear 

Solid or Maxwell. The key point is that for a given modulation frequency ω, all the 

viscoelastic information is given by the complex function  �̂�(𝜔)

)                    (S.5)�̂�(𝜔) = 𝜓𝑅 (𝜔) + 𝑖 𝜓𝐼 (𝜔

For Kelvin-Voigt model, the above function is 

                                                                                                                             
�̂�𝐾𝑉(𝜔) =

∞

∫
‒ ∞

𝑒 ‒ 𝑖𝜔𝑡𝜓𝐾𝑉(𝑡)𝑑𝑡 =
∞

∫
‒ ∞

𝑒 ‒ 𝑖𝜔𝑡[𝑘𝐻(𝑡) + 𝑐𝛿(𝑡) ]𝑑𝑡 =
∞

∫
0

𝑒 ‒ 𝑖𝜔𝑡𝑘𝑑𝑡 + 𝑐 =‒ 𝑖
𝑘
𝜔

+ 𝑐

(S.6)

We can always find (for certain frequency) a couple of values k and c in such a way that 

eqn (S.5) and (S.6) are exactly the same complex number

                      (S.7)�̂�𝐾𝑉(𝜔) = �̂�(𝜔)

But, as all the information about the behavior of the system is condensed in this complex 

number, both systems are totally equivalent.
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Expression for the loss modulus

The Young modulus is defined (without viscosity), as the ratio between the strain and the 

stress

                   (S.8)𝜎(𝑡) = 𝐸𝜀(𝑡)

We can apply the Fourier transform to this equation, obtaining:

       (S.9)𝜎(𝜔) = 𝐸𝜀(𝜔)    

The complex Young modulus is then defined with more generality, for a 1D system, as 

the ratio between the stress and the strain in the Fourier domain.

( )                      (S.10)
𝜎(𝜔)
𝜀(𝜔)

= 𝐸 ∗
𝜔

This definition holds perfectly in the case of the simple elastic case (zero viscosity), 

because then the complex number  is equivalent to E.𝐸 ∗

The above relationship implies a linear relationship between stress and strain. This is no 

longer the case for a 3D geometry where the force depends on a non-linear manner on the 

indentation and the velocity. In the particular case of Sneddon model for the indentation 

plus the Kelvin-Voigt model for viscoelasticity, we have the next expression:

     (S.11)
𝐹(𝑡) =

1

1 ‒ 𝜈2

2𝑡𝑎𝑛(𝜙)
𝜋

𝐼(𝑡)[2𝜂𝐸�̇�(𝑡) + 𝐸𝐼(𝑡)]



8

However, a linear relationship for the 3D case can be obtained by considering small 

displacements  around a fixed indentation :∆𝐼(𝑡) 𝐼0

                                                                                         (S.12)𝐼(𝑡) = 𝐼0 + ∆𝐼(𝑡)

                                                                                            (S.13)𝐹(𝑡) = 𝐹0 + ∆𝐹(𝑡)

For our particular case, we obtain (substituting (S.12) and (S.13) in eqn (S.11))

                        (S.14)           
𝐹0 + ∆𝐹(𝑡) =

1

1 ‒ 𝜈2

2tan (𝜙)
𝜋

(𝐼0 + ∆𝐼(𝑡))[2𝜂𝐸( ̇∆𝐼(𝑡)) + 𝐸(𝐼0 + ∆𝐼(𝑡))]

If we assume that  is very small we can keep just the terms proportional to  and to , ∆𝐼 ∆𝐼 𝐼0

obtaining two equations:

                                                                             (S.15)
𝐹0 =

1

1 ‒ 𝜈2

2tan (𝜙)
𝜋

𝐸𝐼2
0

                                         (S.16)
∆𝐹(𝑡) =

1

1 ‒ 𝜈2

2tan (𝜙)
𝜋

𝐼0[2𝜂𝐸 ̇∆𝐼(𝑡) + 2𝐸∆𝐼(𝑡)]

The first one is the expression of the constant force due to the constant indentation. We 

can apply (as in the one-dimensional case) the Fourier transform to the second expression, 

obtaining:

                                          (S.17)
∆𝐹(𝜔) =

1

1 ‒ 𝜈2

2tan (𝜙)
𝜋

𝐼0∆𝐼(𝜔)[2𝜂𝐸( ‒ 𝑖𝜔) + 2𝐸]

If we analyze eqn (S.17) in the case of an elastic material (no viscosity, ), we can 𝜂𝐸 = 0

see that E is defined as:
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                                                                             (S.18)
𝐸 =

∆𝐹
∆𝐼

(1 ‒ 𝜈2)
𝜋

4𝐼0tan (𝜙)

We want to generalize this definition for the viscoelastic case, so we hold the viscosity 

terms in eqn (S.17), obtaining the general complex Young modulus:

                                                     (S.19)
𝐸 ∗ =

∆𝐹
∆𝐼

(1 ‒ 𝜈2)
𝜋

4𝐼0tan (𝜙)
=‒ 𝑖𝜔𝜂𝐸 + 𝐸

This complex Young modulus can be separated in imaginary and real parts, which are 

respectively the loss and the storage modulus:

                                                                             (S.20)𝐸𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑅𝑒[𝐸 ∗ ] = 𝐸

     (S.21)𝐸𝑙𝑜𝑠𝑠 = 𝐼𝑚[𝐸 ∗ ] =‒ 𝑖𝜔𝜂𝐸


