Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Fig. S1 The *I-V* curves of Pd-SnO₂.

Fig. S2 (a-f) The photoresponse of SnO₂ nanoparticle thin film/SiO₂/*p*-Si heterojunctions at a bias of -1 V and different light wavelengths (400 nm, 450nm, 500 nm, 550nm, 600nm, 650 nm, 760nm, 808 nm, 850nm, 900 nm, 950nm, 980 nm).

Fig. S3 (a) Polarization dependence of photocurrent; (b) photocurrent response of SnO_2 nanoparticle thin film/SiO₂/*p*-Si heterojunctions under incident light with different polarization angles. The 0° of polarization angle was defined as the any direction.

Fig. S4 The *I-V* curves of SnO₂ nanoparticle thin film/SiO₂/*p*-Si heterojunctions at different monochromatic lights (0.1 mW/cm²) and dark.

The effect of an insulating SiO₂ layer on the photoresponse of heterojunction

An insulating SiO₂ layer between the SnO₂ and Si plays an important role in the photoresponse.^{1,2} At present, it has been reported that adding the SiO₂ passivation layers can reduce the leakage current and make ZnO/*p*-Si heterojunction exhibit the enhanced on-off ratio.³ It has been also demonstrated that the carrier multiplication process in the insulating oxide layer can improve the response of PDs. Moreover, it has been mentioned that in this work the thickness of natural SiO₂ layer on Si surface is only about 1.2 nm⁴, which is accord with the optimized SiO₂ thickness (several nanometers) according to reported results.⁵ The electric field in the SiO₂ layer is estimated to be 8.3×10^6 V/cm at 1 V bias using E=V/d, where *E* is the electric field, *V* is the bias voltage, and *d* is the thickness of the SiO₂ layers. Under the high intensity

of the electric field the photo-generated carriers can tunnel through the SiO₂ layer. Meanwhile, it also is demonstrated that the thicker the SiO₂ layer is, the bigger the bias voltage is.³ Therefore, the SiO₂ layer plays an important role in the photo-response and the operating bias voltage of SnO₂ nanoparticles thin film/SiO₂/*p*-Si heterojunction. The optimized SiO₂ thickness is several nanometers according to reported results.⁵ If the SiO₂ layer is too thick, it can decrease the effectiveness of the carrier tunneling due to the scattering and trapping of the carriers in the SiO₂ layer, at the same time offers a high potential barrier preventing the carriers from the diffusion and shift tunneling the junction interface.⁶ Thus, the photo-response of SnO₂/SiO₂/*p*-Si heterojunction would be degraded. At this moment, only a higher light power intensity and a greater bias voltage can remedy the negative impact produced by thicker SiO₂ layer. For example, in ZnO nanorods arrays/SiO₂/*p*-Si (lateral structure) the SiO₂ layer with about 50 nm make the operating bias voltage of detector be ~15 V.³

- 1 G. M. Ali and P. Chakrabarti, J. Phys.D: Appl. Phys., 2010, 43, 415103.
- 2 Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, C. S. Chang and S. H. Liu, J. Electron. Mater., 2002, 32, 395.
- 3 D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang and J. H. He, ACS nano, 2011, 5, 7748.
- 4C. Q. Yu and H. Wang, Adv. Mater. 2010, 22, 966-970.
- 5a) H. W. Du, J. Yang, Y. H. Li, F. Xu, J. Xu and Z. Q. Ma, *Appl. Phys. Lett.*, 2015, **106**, 093508; b) W. Fang, S. J. Liu, T. E. Hsieh, J. Y. Juang and J. H. Hsieh, Sol. Energy *Mater. Sol. Cells*, 2011, **85**, 2589.
- 6J. Sheng, K. Fan, D. Wang, C. Han, J. Fang, P. Gao and J. Ye, ACS Appl. Mater. Interfaces, 2014, 6, 16027.