Supporting Information

Enhanced current rectification and self-powered photoresponse in

multilayer p-MoTe₂/n-MoS₂ van der Waals heterojunctions

Bin Wang,^a Shengxue Yang,^{*a} Cong Wang,^b Minghui Wu,^c Li Huang,^c

Qian Liu,^{*b} *Chengbao Jiang*^{*a}

^a School of Materials Science and Engineering, Beihang University,

Beijing 100191, P.R. China

Email: sxyang@buaa.edu.cn; jiangcb@buaa.edu.cn; mailto:jiangcb@buaa.edu.cn; <a href="mailto:jiang

^b National Center for Nanoscience and Technology, No. 11 Beiyitiao,

Zhongguancun, Beijing 100190, P.R. China

Email: <u>liuq@nanoctr.cn</u>

^c Department of Physics, South University of Science and Technology of China, Shenzhen 518005, P.R. China

Experimental section:

Device Fabrication. The multilayer MoTe₂/MoS₂ heterojunctions were fabricated by the dry transfer method. Firstly, both multilayer MoS₂ and MoTe₂ flakes were exfoliated by micromechanical cleavage approach from bulk MoS₂ and MoTe₂ crystals and transferred onto two separate pieces of Si substrates coating with 300 nm-thick SiO₂ layer. And then, the polymethyl methacrylate (PMMA) solution was spin-coated onto the substrate with MoS₂ multilayer, using rotating speed of 3000 rpm/s. After annealing at 180 °C for 10 minutes, the PMMA-coated substrate was immersed in 5 M NaOH solution at 60 °C and PMMA would be floating with multilayer MoS₂ subsequently. After that, the PMMA/MoS₂ film was transferred onto another substrate with MoTe₂ multilayer to superimpose them together, by adjusting the position of flakes under the microscope. Finally, the entire substrate was soaked with acetone to remove the PMMA, leaving the MoTe₂/MoS₂ heterojunctions on the substrate.

The FETs of $MoTe_2/MoS_2$ heterojunctions were fabricated using electron-beam lithography (Raith150). Then 20-nm-thick Ni layer followed by 50-nm-thick Au layer was deposited to fabricate contact metal electrodes by electron beam evaporation (EB700-I) and they were lift-off in acetone.

Characterizations and measurements. The TEM images were

obtained using a JEM-2100F at an acceleration voltage of 200 KV. The selected area electron diffraction (SAED) patterns were also collected by the TEM setup. The Raman measurements were performed by Raman spectrometer (Renishaw Model inVia-Reflex) with the excitation of He–Ne laser (532 nm). Samples were further characterized by Atomic force microscope (ICON) to confirm the thickness of layers. Electrical and optoelectronic behaviors were measured using a semiconductor parameter analyzer and shielded probe station.

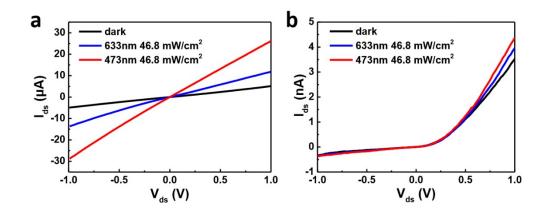


Fig. S1. I_{ds} - V_{ds} characteristics of the individual (a) MoS₂ flakes and (b) MoTe₂ flakes under dark and different laser radiation.

For MoS₂, the linear I_{ds} - V_{ds} curves indicate that the contact between MoS₂ and Ni/Au electrodes are well ohmic. And I_{ds} increases under light illumination, with on/off ratio of 2.32 and 5.14 at laser wavelength of 633 nm and 473 nm, respectively. For MoTe₂, the nonlinear I_{ds} - V_{ds} characteristics suggest that Schottky contacts are formed between the Ni/Au metal pads and MoTe₂, with a current on/off ratio of ~10. Under illumination, the increase rate of I_{ds} is smaller than that of individual MoS₂.

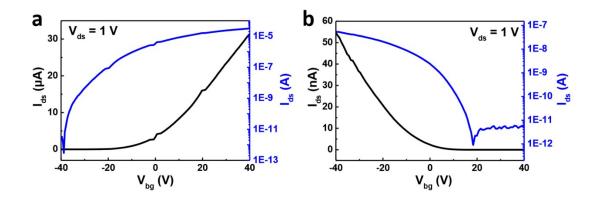


Fig. S2. Transfer characteristics of individual (a) MoS_2 flakes ($V_{ds} = 1 V$) and (b) $MoTe_2$ flakes ($V_{ds} = 1 V$).

For MoS_2 , I_{ds} increases with increasing of V_{bg} , indicating that MoS_2 flakes possess obvious n-type behavior. On the contrary, $MoTe_2$ flakes show p-type behavior, since I_{ds} decreases with increase of V_{bg} .

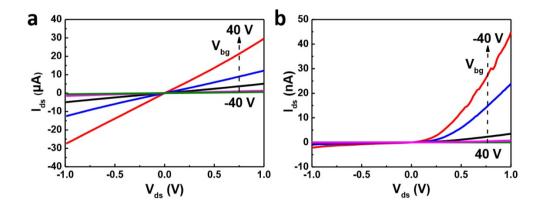


Fig. S3. Output characteristics of the individual (a) MoS_2 flakes and (b) MoTe₂ flakes (V_{bg} = -40 ~ 40 V).