ELECTRONIC SUPPLEMENTARY INFORMATION Impact of Size and Shape Distributions on the Electron Charge Transfer Properties of Silver Nanoparticles

B. Sun* and A. S. Barnard

Molecular & Materials Modelling, DATA61 CSIRO, Door 34 Goods Shed, Village St, Docklands VIC, Australia 3008, Australia

E-mail: Baichuan.Sun@data61.csiro.au

Comparison Between DFTB and DFT

To confirm the reliable accuracy of SCC-DFTB for the Ag nanoparticles considered, we performed a comparison with the Density Function Theory (DFT). In this case we have used DFT within the Generalized Gradient Approximation (GGA) the exchangecorrelation functional Perdew-Burke-Ernzerhof (PBE),¹ with the Projector Augmented Wave (PAW) potentials.^{2,3} This has been implemented via the Vienna Ab initio Simulation Package (VASP)^{4,5} which utilizes an iterative self-consistent scheme to solve the Kohn-Sham equations using an optimized charge-density mixing routine. Each model structure was fully relaxed, prior to the calculation of the total energies. The electronic relaxation technique used herein is an efficient matrix-diagonalization routine based on a sequential band-by-band residual minimization method of single-electron energies,^{6,7} with direct inversion in the iterative subspace; whereas the ionic relaxation involves minimization of the Hellmann–Feynman forces. The initial relaxations and the following static single point energy calculations were performed with a plane–wave basis up to 312 eV, and an energy convergence of 10^{-4} eV, including full spin polarization. The geometry parameters of selected Ag nanoparticles from DFTB and DFT are given in Tab. 1 and 2, and their geometry similarity is illustrated in Fig. 1.

1able 1, $000000000000000000000000000000000000$	Table	e 1: /	Geometry	properties	of Ag	nanoparticles	from	DFTB	computatio
---	-------	--------	----------	------------	-------	---------------	------	------	------------

ID	Geometry	Atom Number	Mean Bond Length	Bond Length Error	Mean Bond Angle	Bond Angle Error	Diameter nm	Aspect Ratio	Formation Energy	ı Fermi Energy
Ag75-DH	DH	75	2.89	0.16	93.36	33.74	1.13	1.24	0.47	-3.68
Ag101-DH	DH	101	2.90	0.14	94.07	34.00	1.27	1.33	0.41	-3.61
Ag146-DH	DH	146	2.92	0.13	94.72	34.55	1.49	1.39	0.35	-3.75
Ag147-IH	IH	147	2.93	0.13	94.55	34.21	1.48	1.20	0.33	-3.75

Table 2: Geometry properties of Ag nanoparticles from DFT computations.

ID	Geometry	Atom Number	Mean Bond Length	Bond Length Error	Mean Bond Angle	Bond Angle Error	Diameter nm	Aspect Ratio	Formation Energy	ı Fermi Energy
Ag75-DH	DH	75	2.91	0.06	93.36	33.71	1.14	1.27	0.44	-3.41
Ag101-DH	DH	101	2.91	0.04	94.09	34.03	1.30	1.40	0.39	-3.03
Ag146-DH	DH	146	2.92	0.05	94.76	34.62	1.48	1.46	0.33	-2.49
Ag147-IH	IH	147	2.93	0.06	94.47	34.20	1.48	1.23	0.32	-3.62

Figure 1: Geometry similarity of sample Ag nanoparticles (a) Ag75-DH, (b) Ag101-DH, (c) Ag146-DH and (d) Ag147-IH from DFTB (Yellow) and DFT (Grey) computation.

Thermodynamically Limited Boltzmann Distribution

Table 3: Boltzmann distribution, for samples that are thermodynamically limited: Shapes, with the probability distributed over all sizes.

	Expect	tation V	Values	(eV)	Qua	ality Facto	ors (relativ	ve)
	E_{Fermi}	IP	$\mathbf{E}\mathbf{A}$	E_{gap}	E_{Fermi}	IP	EA	E_{gap}
Tetrahedron	-3.82	4.10	3.51	0.59	1275.6%	139.1%	43.9%	-30.3%
Octahedron	-3.91	4.24	3.59	0.65	313.3%	294.3%	94.7%	2.7%
Truncated octahedron	-3.95	4.29	3.61	0.67	512.5%	274.5%	136.3%	12.8%
Cuboctahedron	-3.97	4.35	3.59	0.75	193.1%	414.5%	57.2%	12.7%
Truncated cube	-3.85	4.29	3.41	0.89	155.2%	144.6%	97.7%	72.9%
Truncated rhombic dodecahedron	-3.76	4.07	3.44	0.63	1328.3%	222.7%	180.8%	10.0%
Rhombic dodecahedron	-3.71	4.05	3.37	0.68	218.6%	168.8%	99.0%	16.7%
Rhombi-truncated octahedron	-3.78	4.14	3.42	0.72	50.1%	81.5%	12.2%	-3.1%
Modified truncated octahedron	-3.83	4.16	3.50	0.66	96.1%	72.0%	72.1%	10.5%
Small rhombicuboctahedron	-3.81	4.17	3.45	0.71	115.9%	103.9%	58.6%	8.9%
Great rhombicuboctahedron	-3.84	4.23	3.48	0.74	284.1%	37.8%	136.4%	6.2%
Tetrakis hexahedron	-3.77	4.10	3.43	0.67	684.2%	186.0%	188.4%	16.4%
Trapezohedron	-3.79	4.13	3.46	0.67	339.0%	267.6%	133.2%	28.1%
Triakis octahedron	-3.79	4.11	3.46	0.65	255.2%	234.5%	103.7%	16.0%
Hexakis octahedron	-3.81	4.15	3.47	0.69	301.9%	170.0%	43.4%	-23.7%
Decahedron *	-3.97	4.30	3.63	0.67	162.3%	118.1%	88.3%	1.4%
Icosahedron	-4.05	4.38	3.72	0.66	681.9%	239.5%	122.8%	-5.0%
All	-3.92	4.25	3.58	0.67	45	47	37	10

Table 4: Boltzmann distribution, for decahedra samples that are thermodynamically limited: Structure-constrained samples, with the probability distributed over all sizes.

	Expe	ectation ^v	Values (e	eV)	Quality Factors (relative)				
	E_{Fermi}	IP	$\mathbf{E}\mathbf{A}$	E_{gap}	E_{Fermi}	IP	\mathbf{EA}	E_{gap}	
Simple Decahedron	-3.84	4.16	3.53	0.63	313.5%	636.3%	86.6%	6.8%	
Ino Decahedron	-4.01	4.35	3.67	0.69	284.3%	168.4%	117.3%	10.7%	
Marks Decahedron	-3.96	4.29	3.63	0.66	310.4%	210.6%	108.0%	8.4%	

Table 5: Boltzmann distribution, for samples that are thermodynamically limited: Facet/Polyhedra-constrained-constrained samples, with the probability distributed over all sizes.

	Expe	ectation V	Values (e	V)	Quality Factors (relative)					
	E_{Fermi}	IP	EA	E_{gap}	E_{Fermi}	IP	$\mathbf{E}\mathbf{A}$	E_{gap}		
Single Crystal	-3.83	4.16	3.49	0.67	11.0%	7.7%	8.3%	-1.6%		
Twinned Crystal	-3.97	4.30	3.64	0.67	142.3%	105.9%	79.1%	1.0%		
Simple	-3.88	4.23	3.53	0.70	-6.4%	-4.8%	-12.7%	-16.8%		
Complex	-3.79	4.14	3.44	0.70	95.5%	57.0%	53.2%	-3.3%		

Table 6: Boltzmann distribution, for samples that are thermodynamically limited: Indexconstrained samples, with the probability distributed over all sizes.

	Expe	ectation '	Values (e	V)	Quality Factors (relative)						
	E_{Fermi}	IP	EA	E_{gap}	E_{Fermi}	IP	\mathbf{EA}	E_{gap}			
n < 4	-3.95	4.28	3.63	0.65	151.8%	120.5%	84.8%	4.2%			
$n \ge 4$	-3.98	4.31	3.64	0.68	222.2%	154.6%	92.7%	2.0%			
p < 4	-3.98	4.31	3.64	0.67	134.7%	87.3%	77.1%	-5.8%			
$p \ge 4$	-3.95	4.28	3.62	0.66	375.9%	264.1%	120.2%	11.6%			

Size-dependent Normal Distribution

Table 7: Normal distribution, for samples that are kinetically limited: Shapes, with the probability distributed over all sizes.

	Expect	tation V	Values	(eV)	Qu	ality Fact	ors (relati	ve)
	E_{Fermi}	IP	$\mathbf{E}\mathbf{A}$	E_{gap}	E_{Fermi}	IP	$\mathbf{E}\mathbf{A}$	E_{gap}
Tetrahedron	-3.77	4.25	3.29	0.96	120.4%	-14.8%	-5.5%	-19.1%
Octahedron	-3.85	4.33	3.37	0.96	82.0%	30.0%	-9.0%	-13.0%
Truncated octahedron	-3.91	4.37	3.45	0.92	89.4%	20.3%	-14.9%	-25.3%
Cuboctahedron	-3.93	4.40	3.47	0.93	242.7%	43.5%	42.4%	12.9%
Truncated cube	-3.77	4.45	3.12	1.33	40.6%	2.5%	-39.4%	-11.7%
Truncated rhombic dodecahedron	-3.76	4.23	3.29	0.95	182.4%	-18.5%	38.4%	-10.1%
Rhombic dodecahedron	-3.69	4.11	3.27	0.84	237.7%	44.1%	63.9%	19.8%
Rhombi-truncated octahedron	-3.70	4.23	3.17	1.06	97.1%	-4.7%	-5.0%	-6.6%
Modified truncated octahedron	-3.82	4.23	3.41	0.82	173.9%	61.8%	83.3%	33.1%
Small rhombicuboctahedron	-3.78	4.22	3.34	0.88	115.7%	35.0%	101.9%	49.7%
Great rhombicuboctahedron	-3.82	4.26	3.40	0.86	191.7%	49.4%	57.2%	27.3%
Tetrakis hexahedron	-3.76	4.19	3.34	0.85	381.5%	39.3%	106.6%	29.5%
Trapezohedron	-3.78	4.18	3.37	0.82	284.6%	38.4%	58.0%	7.5%
Triakis octahedron	-3.72	4.19	3.26	0.93	54.7%	43.3%	-15.6%	-14.7%
Hexakis octahedron	-3.77	4.25	3.28	0.97	162.2%	43.2%	41.1%	25.7%
Decahedron *	-3.94	4.35	3.53	0.82	89.7%	52.4%	39.3%	10.3%
Icosahedron	-3.99	4.65	3.37	1.28	15.2%	-62.4%	-43.4%	-48.5%
All	-3.86	4.29	3.42	0.87	36	34	19	4

Table 8: Normal distribution, for decahedra samples that are kinetically limited: Structureconstrained samples, with the probability distributed over all sizes.

	Expe	ctation `	Values (e	eV)	Quality Factors (relative)				
	E_{Fermi}	IP	$\mathbf{E}\mathbf{A}$	E_{gap}	E_{Fermi}	IP	\mathbf{EA}	E_{gap}	
Simple Decahedron	-3.75	4.33	3.18	1.15	44.4%	-47.5%	-47.5%	-45.9%	
Ino Decahedron	-3.98	4.44	3.52	0.92	104.4%	0.8%	3.5%	-16.7%	
Marks Decahedron	-3.94	4.33	3.55	0.78	232.3%	144.3%	89.8%	40.5%	

Table 9: Normal distribution, for samples that are kinetically limited: Facet/Polyhedraconstrained-constrained samples, with the probability distributed over all sizes.

	Expe	ectation '	Values (e	V)	G	Quality Fact	ors (relative)
	E_{Fermi}	IP	EA	E_{gap}	E_{Fermi}	IP	$\mathbf{E}\mathbf{A}$	E_{gap}
Single Crystal	-3.78	4.24	3.32	0.92	34.0%	3.6%	10.7%	1.8%
Twinned Crystal	-3.94	4.36	3.53	0.83	80.1%	37.5%	30.3%	2.7%
Simple	-3.88	4.23	3.53	0.70	15.4%	31.9%	65.9%	104.5%
Complex	-3.79	4.14	3.44	0.70	141.0%	117.5%	191.1%	137.7%

Table 10: Normal distribution, for samples that are kinetically limited: Index-constrained samples, with the probability distributed over all sizes.

	Expe	ctation V	Values (e	eV)	Quality Factors (relative)						
	E_{Fermi}	IP	$\mathbf{E}\mathbf{A}$	E_{gap}	E_{Fermi}	IP	\mathbf{EA}	E_{gap}			
n < 4	-3.91	4.35	3.47	0.88	40.4%	2.6%	-10.1%	-23.3%			
$n \ge 4$	-3.96	4.35	3.58	0.77	214.5%	135.1%	141.4%	74.0%			
$\overline{p < 4}$	-3.94	4.38	3.51	0.87	75.8%	75.2%	66.1%	56.7%			
$p \ge 4$	-3.94	4.30	3.58	0.73	377.5%	334.7%	228.7%	139.9%			

References

- Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, 77, 3865–3868
- (2) Blöchl, P. E. Projector Augmented-wave Method. Phys. Rev. B 1994, 50, 17953–17979.
- (3) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B*, **1999**, *59* 1758–1775
- (4) Kresse, G.; Hafner, J. Ab initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, RC558–561
- (5) Kresse, G.; Hafner, J. Efficient Iterative Schemes for *Ab initio* Total-Energy Calculations Using a Plane-wave Basis set. *Phys. Rev. B* **1996**, *54*, 11169–11186
- (6) Kresse, G.; Furthmüller, J. Efficiency of Ab initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set. Comp. Mat. Sci., 1996, 6 15–50
- (7) Perdew, J. P.; Zunger, A. Self-interaction Correction to Density Functional Approximations for Many-Electron Systems. *Phys. Rev. B*, **1981**, 23 5048–5079