Supporting Information

Ultrathin TiO₂-B Nanowires as Anode Material for Mg-Ion Batteries Based on a Surface Mg Storage Mechanism

Yuan Meng^a, Dashuai Wang^a, Yingying Zhao^a, Ruqian Lian^a, Yingjin Wei^{a,*}, Xiaofei Bian^a, Yu Gao^{a,*}, Fei Du^{a,b}, Bingbing Liu^b, Gang Chen^{a,b}

^aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, P. R. China.
^bState Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P. R. China.

Corresponding author: yjwei@jlu.edu.cn (Y. J. Wei), yugao@jlu.edu.cn (Y. Gao); Tel & Fax: 86-431-85155126.

Experimental

Preparation of the TiO₂-B reference sample: 0.4 g commercial TiO₂ (P25, Degussa) was dispersed in 40 ml 10 M NaOH under magnetic stirring and ultrasonic treatment. The resulting suspension was transferred into a 50 ml Teflon autoclave and subjected to hydrothermal treatment at 170 °C for 60 h. After cooling to room temperature, a white precipitate was collected by centrifugation and washed with deionized water and dilute hydrochloric acid. This intermediate product was constantly stirred in 0.1 M HCl for 8 h to complete the H⁺/Na⁺ exchange reaction. Then the material was frozen-dried at -30 °C for 20 h. Finally, a white powder was collected and heat treated at 400 °C for 4 h in air to get the TiO₂-B nanowires.

Figure S1. Nitrogen adsorption-desorption isotherms of the TiO₂-B nanowires.

Figure S2. CV curve from the three-electrode cell using the APC/THF electrolyte, Pt as the working electrode and Mg as the reference and counter electrodes.

Figure S3. LSV curve obtained from a coin cell using the APC/THF electrolyte, SSF as the working electrode and Mg as the counter electrode.

Figure S4. XRD (a), N_2 adsorption-desorption isotherms (b), SEM (c) and TEM (d)

of the reference TiO₂-B nanowire sample.

Figure S5. Rate performance (a) and charge-discharge cycling performance at 2C rate

(b) for the reference TiO_2 -B nanowire sample.

Figure S6. CV curves of the TiO₂-B nanowires at a scanning rate of 0.05 mV·s⁻¹.

Figure S7. CV of the TiO₂-B nanowires in a 1.0 M LiPF₆ electrolyte dissolved in ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC : DMC = 3 : 7).

Figure S8. Calculated diffusion barrier for Mg²⁺ ions in TiO₂-B.

Figure S9. Total and projected density states of TiO₂-B.

Figure S10. The charge difference isosurfaces of Mg^{2+} ion adsorption on the site A2 (left) and C (right) sites of TiO₂-B (-110) surface, respectively; isosurface level is set to 0.005 e/Å³.

Figure S11. Ti 2p XPS pattern of the TiO₂-B nanowires.

Figure S12. (a) Ti 2p, (b) Mg 1s, (c) Al 2p, and (d) Cl 2p XPS patterns of the TiO₂-B electrode held at the open-circuit voltage (OCV) for 36 h.

Figure S13. First discharge curve of the TiO_2 -B nanowires in Mg ion batteries.