Supporting Information for:

Solution Synthesis and Phase Control of Inorganic Perovskites for High-performance Optoelectronic Devices

Authors:

Jia Liang,¹ Caixing Wang,¹ Peiyang Zhao,¹ Zhipeng Lu,¹ Yue Ma,¹ Zhaoran Xu,¹ Yanrong Wang,¹ Hongfei Zhu,¹ Yi Hu,¹ Guoyin Zhu,¹ Lianbo Ma,¹ Tao Chen,¹ Zuoxiu Tie,¹ Jie Liu,^{1,2} and Zhong Jin¹*

Affiliations:

¹ Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.

² Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.

*Correspondence and requests for materials should be addressed to Z. J. (email: zhongjin@nju.edu.cn)

Methods

Synthesis of inorganic perovskite cesium lead halides (CsPbX₃, X = Br or I)

Inorganic perovskite CsPbX₃ were fabricated by a facile and low-cost solution-phase approach. Typically, 0.01 mol lead acetate (Pb(Ac)₂) and 0.01 mol cesium acetate (Cs(Ac)₂) were added into 25 mL haloid acid (HBr or HI, 47 wt.%) aqueous solution and stirred for 30 min. The mixture was transferred into a Teflon-lined stainless steel autoclave. The autoclave was sealed and placed into an oven, and then heated at 150 °C for 2 h. After the reaction, the autoclave was token out from the oven and rapidly cooled to room-temperature by water flushing. The asobtained product was washed with anhydrous isopropanol for several times and dried in a vacuum oven at 60 °C. For each batch of synthesis, the yields are around 7.0 g (~97%) for CsPbI₃ and 5.7 g (~98%) for CsPbBr₃, respectively.

Fabrication of y-CsPbI₃ and b--CsPbI₃ based photodetectors

Firstly, FTO glass substrate (with the FTO thickness of ~1 μ m and the size of 2 × 2 cm) was etched by 2.0 M HCl and Zn powder to fabricate two separated FTO electrodes with a spacing of 3 mm. Subsequently, the FTO substrate was cleaned with acetone, ethanol, and deionized water, and then dried in air. Typically, 360 mg of y-CsPbI₃ product was put in an Ar-filled glovebox, dissolved into 1.0 mL dimethylformamide (DMF), and then spin-coated on the patterned FTO substrate to prepare y-CsPbI₃ film. To convert the orthorhombic phase y-CsPbI₃ to the cubic perovskite phase b-CsPbI₃, an additional step was carried out by heating the y-CsPbI₃ film to 335 °C for more than 1 min. To prevent the influence of ambient environment, the as-fabricated two-terminal photoreactor was encapsulated by a piece of cover glass using a hot-melt spacer (Surlyn 1702, 30 μ m thick, Solaronix), as shown in the insets of Figure 3a,b.

Fabrication of b-CsPbI₃/carbon based all-inorganic perovskite solar cells

The FTO substrate were patterned and cleaned with the same method mentioned above. The c-TiO₂ layer was deposited on the FTO substrate by spin-coating a mixed ethanol solution of 0.5 M titanium isopropoxide and 0.5 M diethanol amine at 7000 rpm for 30 s, and the annealing in air at 500 °C for 2 h. The m-TiO₂ layer was deposited by spin-coating a mixture of TiO₂ paste (with average particle size of 20 nm) and ethanol with a weight ratio of 1:8 at 5000 rpm for 30 s and sintering at 500 °C for 30 min; subsequently, the FTO substrate was immersed into a 0.04 M TiCl₄ aqueous solution at 70 °C for 30 min, cleaned with water and ethanol, and then annealed at 450 °C for another 30 min. The b-CsPbI₃ film was coated on the FTO/c-TiO₂/m-TiO₂ or FTO/c-TiO₂ substrate with the same method for the fabrication of photoreactors as mentioned above. Finally, the carbon counter electrode was deposited by doctor-blade coating a layer of conductive carbon ink on the surface of b-CsPbI₃ film and then heated at 70 °C for 60 min.

Characterizations and measurements

The morphological features of the samples were examined by scanning electron microscopy (SEM, HITACH S-4800). X-ray photoelectron spectroscopy (XPS) was performed on a PHI-5000 VersaProbe X-ray photoelectron spectrometer with an Al K α X-ray radiation. XRD spectra were collected with a Bruker D-8 Advance diffractometer using Cu $K\alpha$ X-ray radiation. Optical absorbance spectra were collected with a UV-vis-NIR spectrophotometer (Shimadzu, UV-3600) in a wavelength range of 200-800 nm. The optoelectronic properties of CsPbI₃ based

photodetectors were measured by an electrochemical workstation (CHI-760). The simulated solar AM 1.5G illumination was provided by a solar simulator (Oriel Solar Simulator, Model 91160). The monochromatic lights were obtained by applying optical filters with corresponding wavelengths. The J-V characteristics were recorded by a Keithley 2400 source meter.

Table S1. XPS binding energies and atomic ratios of Cs, Pb and I elements measured from the inorganic perovskite CsPbI₃ film.

	Cs 3d _{5/2}	Cs 3d _{3/2}	Pb4f _{7/2}	Pb4f _{5/2}	I 3d _{5/2}	I 3d _{3/2}
Binding Energy (eV)	723.6	737.6	137.4	142.3	618.3	629.9

Figure S1. (a) SEM image, (b) XRD pattern and (c) UV-vis spectrum of as-prepared CsPbBr₃ microcrystals. The CsPbBr₃ is in the monoclinic phase (JCPDS card No. 18-0364)

Figure S2. SEM images of (a) as-prepared y-CsPbI₃ film and annealed y-CsPbI₃ films after treating at (b) 100 °C, (c) 200 °C, (d) 250 °C, (e) 300 °C and (f) 325 °C, respectively.

Figure S3. Optical images of as-prepared y-CsPbI₃ film and annealed y-CsPbI₃ films treated at 100 °C, 200 °C, 250 °C, 300 °C and 325 °C, respectively.

Figure S4. Working mechanism of the CsPbI₃-based two-terminal photodetectors.

Table S2. Photovoltaic parameters of IPSC-1 and IPSC-2, respectively.

Devices	J_{SC} (mA/cm ²)	$V_{OC}\left(\mathbf{V}\right)$	FF	η (%)
AIPSC-1	13.74	0.58	0.44	3.48
AIPSC-2	14.31	0.67	0.48	4.65