Electronic Supplementary Information

High-performance photodetector based on Sb₂S₃ nanowire: wavelength dependence and wide temperature range utilization

Mianzeng Zhong^a, Xinghua Wang^b, Sijie Liu^a, Bo Li^a, Le Huang^c, Yu Cui^a, Jingbo Li^a and Zhongming Wei^a*

^aState Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100083, China, E-mail: <u>zmwei@semi.ac.cn</u>.

^bDepartment of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

^cSchool of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.

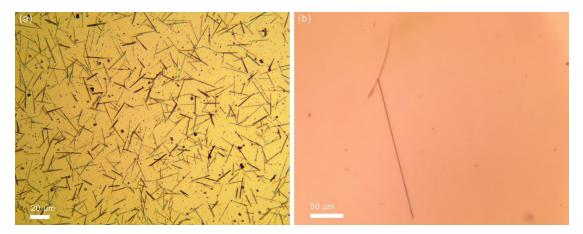


Fig. S1 (a) Optical microscopy image of as-prepared Sb_2S_3 nanowires. (b) Magnified optical microscopy image of the typical individual Sb_2S_3 nanowire.

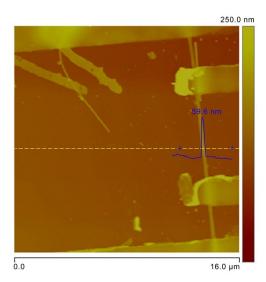


Fig. S2 The AFM image of a typical individual Sb_2S_3 NW based photodetector. The diameter of this NW is 59.6 nm.

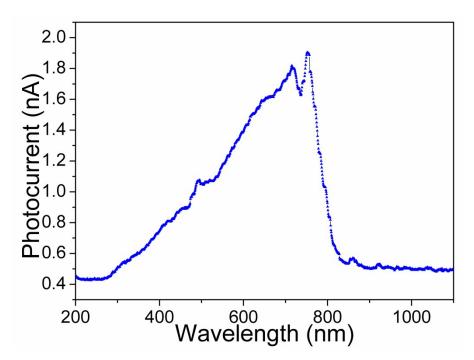
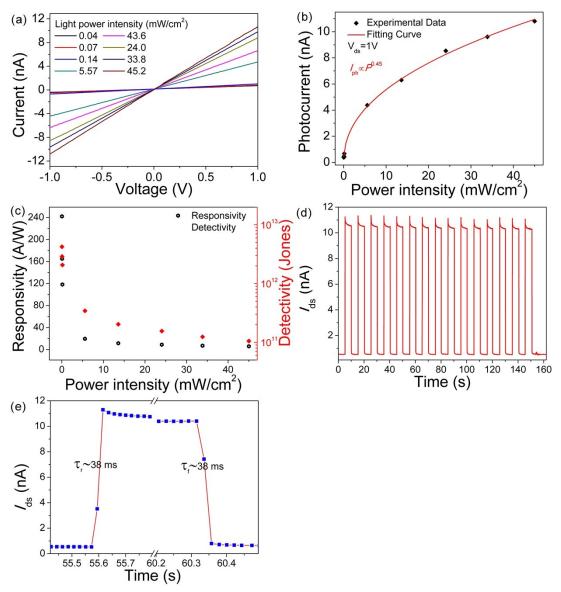
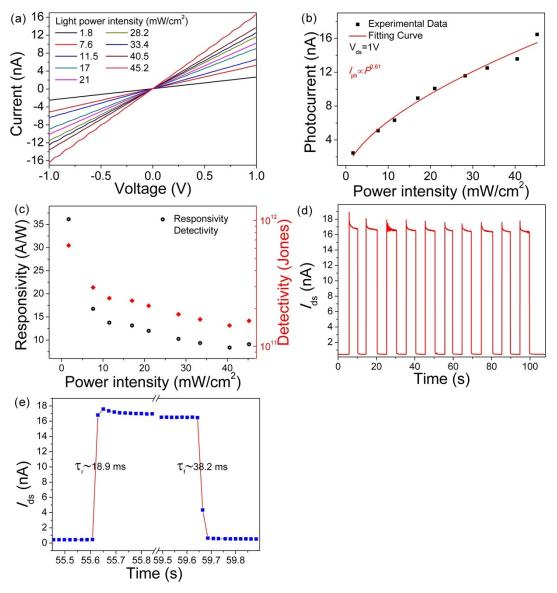




Fig. S3 The wavelength-dependent photocurrent response of the photodetector.

Fig. S4 (a) I-V curves of the photodetector under the illumination of 450 nm laser with different light power intensities (from 0 to 45 mW/cm²); (b) The light power density dependence of the photocurrent measured with a bias voltage of 1 V under the illumination of 450 nm laser; (c) Light intensity dependent spectral responsivity (dark) and detectivity (red) at the illumination of 450 nm laser under a bias of 1 V; (d) The photoswitching behaviours, (e) photocurrent rise and decay of this photodetector under illumination of 450 nm laser with a light intensity of 45.2 mW/cm² and a bias voltage of 1 V.

Fig. S5 (a) I-V curves of the photodetector under the illumination of 532 nm laser with different light power intensities (from 1.8 to 45.2 mW/cm²); (b) The light power density dependence of the photocurrent measured with a bias voltage of 1 V under the illumination of 532 nm laser; (c) Light intensity dependent spectral responsivity (dark) and detectivity (red) at the illumination of 532 nm laser under a bias of 1 V; (d) The photoswitching behaviours, (e) photocurrent rise and decay of this photodetector under illumination of 532 nm laser with a light intensity of 45.2 mW/cm² and a bias voltage of 1 V.