Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

For

In-situ construction heterojunction over the surface of sandwich

structure semiconductor for highly efficient photocatalytic H₂ evolution

under visible light irradiation

Zheguan Lin,^a Jinjin Lin,^a Lingting Huang,^a Xiaoyan Zhang,^a Ying Wang,^a Zizhong Zhang,^{*a}

Huaxiang Lin^a and Xuxu Wang*^a

^a-State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, College

of Chemistry, Fuzhou University, P. R. China

E-Mail: z.zhang@fzu.edu.cn; xwang@fzu.edu.cn; <a href="mailto:xwang@fzu.edu.cn"/xwang@fzu.edu.cn"/xwang@fzu.edu.cn"/xwang@fzu.edu.cn; <a href="mailto:xwang@fzu.edu.cn"/xwang@fzu.edu.cn"/xwang@fzu.edu.cn"/xwang@fzu.edu.cn; <a

Tel: +86-591-22865832; fax: +86-591-83779251

Fig. S1 XRD pattern of the synthesized MoS_2 by calcination in nitrogen atmosphere.

Fig. S2 XPS survey spectrum of MoS₂/MnSb₂S₄ composites and pure MnSb₂S₄.

Fig. S3 The photocatalytic H₂ production for pure MoS₂, pure MnSb₂S₄, 4.7%MoS₂/MnSb₂S₄, 3.3%MoS₂/MnSb₂S₄, 2.3%MoS₂/MnSb₂S₄, and 3.3%MoS₂+MnSb₂S₄.

Fig. S4 (a) UV-Vis diffuse reflectance spectra of few-layer MoS_2 ; (b) VB spectrum of pure MoS_2 nanosheets by XPS. The similar result can be found in the literature.¹

Fig. S5 Mo 3d XPS of the $MoS_2/MnSb_2S_4$ composites and pure MoS_2 . The peaks at 233.8 and 233.2 eV were assigned to the $Mo^{VI} 3d_{5/2}$ and $Mo^{VI} 3d_{3/2}$, respectively, indicating that Mo^{6+} less existed in the pure MoS_2 due to slight surface oxidation upon exposure to air.²

Table S1 Actual loading amounts	s of MoS ₂ on MnSb ₂ S	54 in all samples by ICP.
---------------------------------	--	---------------------------

Samples	$MnSb_2S_4$	2.3%MoS ₂ /MnSb ₂ S ₄	3.3%MoS ₂ /MnSb ₂ S ₄	4.7%MoS ₂ /MnSb ₂ S ₄
Actual (wt %)	0	2.34	3.33	4.72

References

1. M. H. Chiu, C. Zhang, H. W. Shiu, C. P. Chuu, C. H. Chen, C. Y. Chang, C. H. Chen, M. Y. Chou, C. K. Shih and L. J. Li, Nature communications, 2015, 6, 7666.

2. X. Hai, K. Chang, H. Pang, M. Li, P. Li, H. Liu, L. Shi and J. Ye, Journal of the American Chemical Society, 2016.