Supporting Information

Fabrication and improved photoelectrochemical properties of transferred GaN-based thin film with InGaN/GaN layers

Dezhong Cao^{1, 2}, Hongdi Xiao^{1, *} Qingxue Gao¹, Xiaokun Yang¹, Caina Luan¹, Hongzhi Mao¹, Jianqiang

Liu², Xiangdong Liu^{2,3}

¹ School of Microelectronics, Shandong University, Jinan, 250100, China

² School of physics, Shandong University, Jinan, 250100, China

³State Key Laboratory of Crystal Materials, Jinan, 250100, China

This file includes:

Supplementary Figures S1-S3.

Fig. S1 The only etched InGaN/GaN layer of GaN-based film for (a) cross-sectional SEM image and (b)

photoconversion efficiency.

Fig. S2 Photoconversion efficiency as a function of applied potential of the plane n-Si.

Fig. S3 The XPS overview spectrum of the etched sample before and after PEC water splitting at 0.15 V for

4h.

^{*} Corresponding author. *E-mail address*: <u>hdxiao@sdu.edu.cn</u> (H. Xiao).

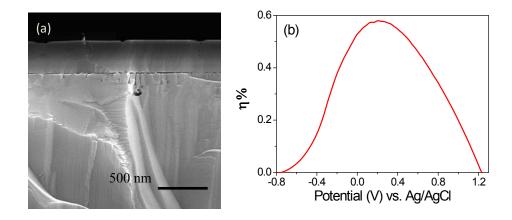


Fig. S1 The only etched InGaN/GaN layer of GaN-based film for (a) cross-sectional SEM image and (b) photoconversion efficiency.

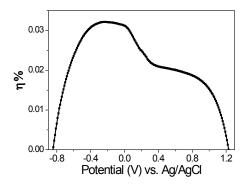


Fig. S2 Photoconversion efficiency as a function of applied potential of the plane n-Si.

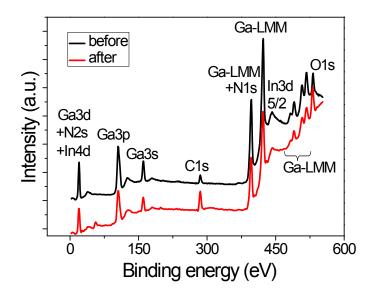


Fig. S3 The XPS overview spectrum of the etched sample before and after PEC water splitting at 0.15 V for

4h.