1 Supporting Information

2 Non-Planar Vertical Photodetectors Based on Free-Standing Two-Dimensional

3 SnS₂ Nanosheets

- 4
- 5 Guangbo Liu,^{a,c} Zhonghua Li,^a Xiaoshuang Chen,^a Wei Zheng,^a Wei Feng,^a Mingjin
- 6 Dai,^a Dechang Jia,^b Yu Zhou^b and PingAn Hu^{a*}
- 7 aKey Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of
- 8 Education, Harbin Institute of Technology, Harbin 150080, P. R. China.
- 9 ^bInstitute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001, P.
- 10 R. China.
- ¹¹ ^cDepartment of Chemistry, Harbin Institute of Technology, Harbin, 150001, P. R.
- 12 China.

13 Corresponding Author

- 14 *hupa@hit.edu.cn (P.A.H.)
- 15

16 Experimental Section

17 Synthesis of Free-standing 2D SnS₂ Nanosheets. Free-standing 2D SnS₂ nanosheets

were vertically grown onto FTO substrate by CVD method in a two-temperature zone tube furnace. In a typical growth procedure, 100 mg $SnCl_4 \cdot 5H_2O$ powder was loaded in an alumina boat, was placed at the center of the downstream heating zone. A FTO

21 substrate was placed downstream to the $SnCl_4 \cdot 5H_2O$ powder. The distance of the

22 SnCl₄•5H₂O alumina boat and the substrate is \sim 3 cm. 200 mg S powder was placed in

23 another alumina boat at the upstream heating zone. Before the start of the growth, the

24 furnace chamber was flushed with 1200 sccm high purity Ar gas for ~20 min to

25 remove oxygen in the chamber. Next, the center of the downstream heating zone was

27 temperature of the S powder at the upstream heating zone was set to 250°C. The

26 heated to 450°C from room temperature at a ramp rate of 10°C. At the same time, the

temperature in the downstream heating zone was kept at 450°C for 5 min for the SnS₂
growth under a mixture carrier gas of H₂ (15 sccm) and Ar (45 sccm). After the
growth, the furnace was naturally cooled down to room temperature and free-standing
vertical 2D SnS₂ nanosheets on FTO substrate were obtained.

Device Fabrication. To fabricate the vertically structured optoelectronic device, free-5 standing vertical SnS₂ nanosheets were firstly prepared on conductive FTO substrate. 6 Then, a PMMA layer was spin-coated onto the substrate to wrap the SnS₂ nanosheets. 7 After that, the top part of the PMMA was etched away by using oxygen plasma, 8 exposing fresh and clean tips of the nanosheets. Then, Au film with a thickness of 20 9 nm was deposited on the top of the exposed nanosheets by thermal evaporation. For 10 fabricating the parallel SnS₂ nanosheet photodetector, the as-grown vertical SnS₂ 11 nanosheets were firstly transferred from FTO to SiO2/Si substrates. Au electrodes 12 with thickness of 30 nm were then deposited via thermal evaporation using a copper 13 grid shadow mask. The device was annealed at 200 °C to reduce resistance before 14 15 measurements.

Materials and Device Characterizations. The crystallographic characterization of the 16 samples was performed using a Philips Panalytical X'Pert Pro multipurpose 17 diffractometer with Cu-K α X-ray radiation (λ =1.5418 Å). The morphologies of the 18 samples were examined using a Hitachi SU8000 field-emission scanning electron 19 microscope (FE-SEM) with a 20 kV accelerating voltage. Atomic force microscopy 20 (AFM) characterizations were performed using a Bruker Dimension Icon AFM. The 21 22 detailed microstructure, growth orientations and composition of the SnS₂ nanosheets 23 were carried out by a Tecnai-G2 F30 transmission electron microscopy (TEM) attached with an energy dispersive X-ray spectroscopy (EDS) system, operating at 24

1 300 kV. The temperature gradient in the furnace was detected by using a TES-1310 digital thermometer equipped with a WRNK-81530 thermocouple (TES Electrical 2 Electronic Corp., Taipei). Raman and photoluminscence (PL) spectra for the 3 vertically oriented 2D SnS₂ nanosheets were collected from a LabRAM XploRA laser 4 Raman spectrometer (HORIBA Jobin Yvon CO. Ltd) with excitation wavelength of 5 442 nm and 532 nm, intensity of 82 µW and 150 µW, respectively. Oxygen plasma 6 treatment was performed on a PDC-32G-2 Plasma Cleaner (Harrick Plasma). The 7 device was characterized using a semiconductor analyzer (Keithley 4200 SCS) 8 combined with a Lakeshore probe station. Photoelectric data are obtained by using a 9 500 W xenon lamp as the light source. Mono-chromatic lights of 254-850 nm are 10 obtained using optical filters. The intensities of incident light source are measured by 11 a power and energy meter (Model 372, Scienteck). 12

- 13
- 14

1 Supplementary Figures 2 a H_2/Ar S powder SnCl₄•5H₂O Substrate H_2/Ar 3

4 Figure S1. Schematic for CVD synthesis setup of vertical SnS_2 nanosheets.

Figure S2. Statistical distribution of thickness and size of the as-grown vertical SnS₂
nanosheets: (a) Typical AFM image and (b) height profile of a 2D SnS₂ nanosheet. (c)
Statistical distribution of the SnS₂ crystal thickness, smooth curve is the Gaussian fit
of the thickness distribution. (d) Statistical distribution of the SnS₂ crystal domain size,
smooth curve is the Gaussian fit of the size distribution.

- 2 Figure S3. Schematic illustrations of SnS_2 grown on (a) SiO_2 and (c) mica substrates.
- 3 SEM image of as-grown SnS_2 nanosheets on (b) SiO_2 and (d) mica substrates.
- 4

Figure S4. Steps for fabrication of vertical SnS₂ nanosheets optoelectronic device. (a)
Bare FTO substrate, (b) vertical SnS₂ nanosheets grown by CVD, (c) spin-coating
polymethyl-methacrylate (PMMA) that covers both the bottom and top of the
nanosheets, (d) after oxygen plasma etching, the tips of the nanosheets are exposed, (e)
deposition of Au electrode with thickness of 20 nm on the top of the nanosheets.

2 Figure S5. Oxygen plasma etching of SnS₂ nanosheet. (a) Primitive SnS₂ nanosheet, (b)
3 after spin coating PMMA, (c) after O₂ plasma treatment for 30 min, (d) Raman
4 characterizations.

1

According to a previous report,¹ the oxygen plasma has no affect on the SnS₂ 5 nanosheets. To further confirm this, we performed a supplemtary study on the oxygen 6 plasma etching of our grown 2D SnS_2 nanosheets. As shown in Figure S5, we firstly 7 transfered a SnS2 nanosheet onto SiO2/Si substrates (Figure S5a, the white circles 8 9 denote organic residues on substrates). Then a PMMA layer was spincoated onto the substrate to wrap the SnS₂ nanosheet (Figure S5b). As seen that after spin coating the 10 colors of the substrate is changed, indicating the successful coverage of PMMA layer. 11 After oxygen plasma treatment for 30 min, as seen in Figure S5c, the substrate color 12 restored, implying the PMMA layer was completely removed. In addition, the 13 14 residues on substrates were also removed, however, the SnS₂ nanosheet did not show

any change. The above results prove that oxygen plasma etching has no effect on the
SnS₂ nanosheets, but may be used to selectively remove organic residues on the
substrates, which is consistent with the findings reported by P. Sutter and coauthors.¹
Meanwhile, the SnS₂ nanosheet also showed no change in Raman peaks before and
after oxygen plasma treatment (Figure S5d), further confirming there was no SnS₂
etching occurred.

2 **Figure S6.** Optoelectronic properties of the parallel SnS₂ nanosheet photodetector 3 with Au electrodes only. (a) *I-V* characteristics of the device in the dark and under 4 light illumination with various power intensities. (b) *I*-t curve of the device at $V_{\text{bias}} = 2$ 5 V, $\lambda = 490$ nm, and $P_{\text{light}} = 475 \,\mu\text{W/cm}^2$.

6

1

Device	Bias	Responsivity	EQE (%)	Detectivity	Rise time	Decay time	References
	(V)	(A/W)		(Jones)	(ms)	(ms)	
FL SnS ₂	-	100	-	-	44	44	1
FL SnS ₂	2	8×10 ⁻³	2.4	2×10 ⁹	5×10-3	7×10 ⁻³	2
FL SnS ₂	10	2	-	-	42	42	3
FL SnS ₂	3	100	-	-	330	130	4
FL SnS ₂	1	0.31	71	-	42	40	5
FL SnS ₂	1	261	9.3×10 ⁴	1.9×10 ¹⁰	20	16	6
FL SnS ₂	5	0.65	0.15	1.13×10 ⁸	360	360	7
SnS_2 film	5	6.12×10-6	-	-	460	880	8
SnS ₂ flake	1	1.19	-	2.35×10 ¹¹	1	1	9
FL SnSe ₂	3	1.1×10 ³	2.6×10 ⁵	1.01×10 ¹⁰	14.5	8.1	10
1L MoS ₂	1	7.5×10 ⁻³	-	-	50	50	11
Vertical SnS ₂	2	1.85	469	4.91×10 ⁹	43.4	64.4	This work

 Table S1 Performance comparison of SnS₂ and other 2D-LMDs based photodetectors.

3

4 References

- 5 [1] Y. Huang, E. Sutter, J.T. Sadowski, M. Cotlet, O.L.A. Monti, D.A. Racke, M.R.
- 6 Neupane, D. Wickramaratne, R.K. Lake, B.A. Parkinson, P. Sutter, ACS Nano

7 **2014**, *8*, 10743.

- 8 [2] G. Su, V.G. Hadjiev, P.E. Loya, J. Zhang, S. Lei, S. Maharjan, P. Dong, P. M.
- 9 Ajayan, J. Lou, H. Peng, Nano Lett. 2015, 15, 506.
- 10 [3] J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, X.-M. Meng, Adv. Funct. Mater.

11 **2015**, *25*, 4255.

12 [4] Y. Huang, H.X. Deng, K. Xu, Z.X. Wang, Q.S. Wang, F.M. Wang, F. Wang, X.Y.

11

2

- 1 Zhan, S.S. Li, J.W. Luo, J. He, *Nanoscale* **2015**, *7*, 14093.
- 2 [5] C. Fan, Y. Li, F. Lu, H.-X. Deng, Z. Wei, J. Li, RSC Adv. 2016, 6, 422.
- 3 [6] X. Zhou, Q. Zhang, L. Gan, H. Li, T. Zhai, Adv. Funct. Mater. 2016, 26, 4405.
- 4 [7] J.-J. Wu, Y.-R. Tao, Y. Wu, X.-C. Wu, Sensor Actuat. B-chem 2016, 231, 211.
- 5 [8] D. Yang, B. Li, C. Hu, H. Deng, D. Dong, X. Yang, K. Qiao, S. Yuan, H. Song,
- 6 Adv. Opt. Mater. 2016, 4, 419.
- 7 [9] Y. Tao, X. Wu, W. Wang, J. Wang, J. Mater. Chem. C 2015, 3, 1347.
- 8 [10] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, T.
- 9 Zhai, Adv. Mater. 2015, 27, 8035.
- 10 [11] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H.
- 11 Zhang, ACS Nano 2012, 6, 74.
- 12
- 13