Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Carbonization conditions influence the emission characteristics and

the stability against photobleaching of nitrogen doped carbon dots

Yuan Xiong,[†] Julian Schneider,[†] Claas J. Reckmeier,[†] He Huang,[†] Peter Kasák,[§] and Andrey L. Rogach^{†*}

[†]Department of Physics and Materials Science and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R. [§]Center for Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar

*Corresponding author. Email: andrey.rogach@cityu.edu.hk

Figure S1. Synthetic approach towards $e-CD_{200}$ and $t-CD_{200}$, and photographs of the purified reaction products under daylight (left) and UV light (right).

Figure S2. Synthetic approach towards $e-CD_{140}$ and $t-CD_{140}$, and photographs of the purified reaction products under daylight (left) and UV light (right).

Figure S3. Synthetic approach towards e- GQD_{200} and t- GQD_{200} , and photographs of the purified reaction products under daylight (left) and UV light (right).

Figure S4. TEM image of aggregated *t-GQD*₂₀₀.

Figure S5. Size distribution histograms of *e-GQD*₂₀₀ and *e-CD*₁₄₀.

Figure S6. Full XPS spectra of *e-CD*₁₄₀, *e-GQD*₂₀₀, *t-CD*₁₄₀, and *t-GQD*₂₀₀

Figure S7. (a) High resolution C1s XPS spectrum of t- GQD_{200} ; (b) High resolution N1s spectrum of t- GQD_{200} .

Figure S8. (a) High resolution C1s XPS spectrum of $t-CD_{140}$; (b) High resolution N1s spectrum of $t-CD_{140}$.

Figure S9. Optical spectra of *t-GQD*₂₀₀: Absorption (in blue), PLE (in gray), and PL (in red).