Electronic Supplementary Information

- 2
- 3
- 4
- **5 Exploring Tunable Excitation of QDs to Maximize the Overlap**
- **6 with Absorber for Inner Filter Effect-based phosphorescent**

7 Sensing of Alkaline Phosphatase

- 8 Jinyi Zhang,[†] Xiaomei Lu, [‡] Yu Lei,^{II} Xiandeng Hou*^{†,‡} and Peng Wu*^{†,‡}
- 9 [†]College of Chemistry, and [‡]Analytical & Testing Center, Sichuan University,
- 10 Chengdu, 610064
- 11 ^{II}Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital,
- 12 Chengdu, Sichuan 610072, China
- 13 *corresponding Authors' E-mails: <u>wupeng@scu.edu.cn</u>, <u>houxd@scu.edu.cn</u>

1 Outline

2	1.	Experimental Section
3	2.	Characterization of QDs in IFE-based assayS7
4	3.	Screening of IFE Pairs Based on Tunable Excitation of QDsS14
5	4.	Definition of areas of spectral overlap
6		
7	5.	Optimization of experimental conditions
8	6.	Comparison of analytical performance for ALP
9		detectionS17
10	7.	Analytical performance of UV-Vis assay for ALP
11		detectionS17
12	8.	Interferences of relevant metal ions and other biomolecules
13	9.	L-Cys capped Mn-ZnS QDs detect ALP based on IFE
14		assayS19
15	10.	Analytical performance of UV-Vis assay for ALP (human)
16		detectionS20
17	11.	ALP detection in human serum samples
18	12.	Background fluorescence-free detection in serum
19		samplesS21
20		

1 1. Experimental Section

2 Materials and chemicals

ALP was purchased from Shanghai Yuanye Biotechnology Co., Ltd. Glucose oxidase 3 (GOD), bovine serum albumin (BSA), pepsin, papain, lysozyme, cytochrome C and 4 glutathione were purchased from Sigma-Aldrich (Shanghai, China). Ultra-pure water 5 (resistance >18.2 M Ω .cm) purified by a purification system (PCUJ-10, Chengdu Pure 6 Technology Co., Ltd., Chengdu, China), was used for all experiments. p-7 Nitrophenylphosphate (PNPP), amino acids, N-acetyl-cysteine (N-L-Cys), 8 Mercaptosuccinic acid (MPA), ZnAc₂·7H₂O, MnAc₂·4H₂O, Na₂S·9H₂O, CdCl₂·2H₂O, 9 $C_6H_5Na_3O_7 \cdot 2H_2O_7$ CuCl₂·2H₂O, NaBH₄, Na₂TeO₃, NaOH, Citric 10 Acid. ethylenediamine, 3-mercaptopropionic acid (MPA) (Aladin) and Tris (Sinopharm 11 Chemical Reagent Co., Ltd) were used in this work. 12

13 Apparatus

Fluorescence and phosphorescence spectra of the prepared QDs were collected with an 14 F-7000 spectrofluorometer (Hitachi, Japan) equipped with a plotter unit and a quartz 15 cell (1 cm \times 1 cm). Fluorescence and phosphorescence lifetime were measured on a 16 Fluorolog-3 spectrofluorometer (Horiba Jobin Yvon) with DeltaDiode (Horiba 17 Scientific, for fluorescence) and SpectraLED (Horiba Scientific, for phosphorescence) 18 as the excitation source and a picosecond photon detection module (PPD-850, Horiba 19 Scientific) as the detector respectively. Absorption spectra were recorded using a UV-20 1750 UV/Vis spectrophotometer (Shimadzu, Japan). TEM and HRTEM images of QDs 21 were obtained using a Tecnai G2 F20 S-TWIN transmission electron microscope at an 22

accelerating voltage of 200 kV (FEI Co., USA). XRD patterns were recorded by an
 EMPYREAN (Panalytical Inc., Netherlands) with a Cuκa radiation; XPS was carried
 out with an AXIS Ultra DLD 800 X (Kratos, UK).

4 Synthetic methods of several QDs

5 BSA-coated Mn-ZnS QDs.¹ In brief, 40 μL BSA (10 mg mL⁻¹), 40 μL MnAc₂ (1 mM),
6 38 μL ZnAc₂ (20 mM) and 50 μL Tris-HCl solution (pH = 7.0, 0.1 M) were added to
7 298 μL ultrapure water for five minutes in room temperature. Then, 34 μL Na₂S (20
8 mM) was quickly injected into the precursor solution above followed gently vortexing
9 in room temperature. Phosphorescent BSA-capped Mn-ZnS QDs were thus obtained.

10

11 L-Cys-capped Mn-ZnS QDs.¹ In brief, 60 μ L L-Cys (2 mM), 40 μ L MnAc₂ (1 mM), 12 38 μ L ZnAc₂ (20 mM) and 50 μ L Tris-HCl solution (pH = 8.0, 0.1 M) were added to 13 298 μ L ultrapure water for five minutes in room temperature. Then, 34 μ L Na₂S (20 14 mM) was quickly injected into the precursor solution above followed gently vortexing

in room temperature. Phosphorescent L-Cys-capped Mn-ZnS QDs were thus obtained.

16

15

L-Cys-capped Cu-doped CdS QDs.² In a typical synthesis, aqueous solutions of
CdCl₂ (10 mL, 0.02 M), CuCl₂ (50 μL, 0.02 M) and 25 mL deionized water were mixed
in a 100 mL three-neck flask. Then, L-Cys (10 mL 0.1 M) was added in the system.
The pH of the mixed solution was adjusted to 8.0 with 1.0 M NaOH. After that, 20 mL
0.004 M fresh Na₂S solution dropwise with stirring. Finally, the mixed solution was
refluxed at 100°C with stirring for 45 min in a N₂ atmosphere.

N-L-Cys-capped O/R-CdTe QDs.³ Briefly, 0.5 mmol of CdCl₂, 0.2 g sodium citrate
 dehydrate and 1 mmol N-acetyl-cysteine were dissolved in 25 mL water. The pH was
 adjusted about 11 by dropping 1 mol/L NaOH. Then 0.125 mmol Na₂TeO₃ and 50 mg
 NaBH₄ were added quickly, and at last, the solution was refluxed at 100 °C for 0.5 h (O CdTe QDs) and 1 h (R-CdTe QDs).

6

7 MSA-capped G-CdTe QDs.⁴ Briefly, 0.5 mmol of CdCl₂, and 1 mmol MSA were
8 dissolved in 25 mL citric acid buffer (15 mM) with pH 7. Then 0.125 mmol Na₂TeO₃
9 and 50 mg NaBH₄ were added quickly, and at last, the solution was refluxed at 100 °C
10 for 0.5 h (R-CdTe QDs).

11

B-CDs.⁵ In brief, citric acid (1.0507 g) and ethylenediamine (335 μL) were dissolved
in DI-water (10 mL). Then the solution was transferred to a poly (tetrafluoroethylene)
(Teflon)-lined autoclave (20 mL) and heated at 180°C for 8 h. After the reaction, the
reactors were cooled to room temperature naturally. The product, which was brownblack and transparent, was subjected to dialysis in order to obtained the B-CDs.

17

G-CDs.⁶ Briefly, 500 μL of ethanediamine and 440 mg catechol were mixed into 8 mL
water and then transferred into a 20 mL Teflon-lined autoclave and heated at 180 °C
for 12 h. The resultant dark brown mixture centrifuged to remove the large dots at 12
000 rpm for 10 min, and then the supernatant was collected to dialysis in order to
obtained the G-CDs.

1 Procedures for Screening of IFE Pairs and Subsequent IFE sensing

2 Different concentration of the prepared QDs were mixed with 100 μM PNPP to gain
3 the similar quenching of QDs. The excitation is set at 312 nm. The optimized incubation
4 conditions were set as follows: buffer, 0.01 M Tris-HCl (pH, 8.0); incubation time, 1 h;
5 and temperature, 40 °C.

6 Procedures for ALP Detection Based on the PNPP-Mn-ZnS QDs IFE Pair

7 BSA-Mn-ZnS QDs (50 μ L) and PNPP (2 mM, 50 μ L) were mixed with 1 mL buffer 8 solution (0.01 M Tris-HCl, pH, 8.0) for quenching the phosphorescence of QDs (λ_{ex} = 9 312 nm). Then, different concentrations of ALP from different origins (Escherichia 10 coli, human serum, and bovine) were added to catalyze the conversion from PNPP to 11 PNP at 40 °C and restore the quenched phosphorescence of QDs. The optimized 12 incubation time is 1 h for ALP from Escherichia coli and 3 h for ALP from human 13 serum and bovine.

14 Real Serum Samples Detection

Human serum samples were collected from Sichuan Provincial People's Hospital. 50
µL the prepared Mn-ZnS QDs, 50 µL PNPP (2 mM), and 100 µL Tris-HCl (pH, 8.0,
0.1 M) and 5 µL human serum were added to 1 mL water at 40 °C 3 h. Then, the
quantitation of ALP activity of serum samples was carried out according to the above
procedure.

1 2. Characterization of several QDs

2

Fig. S1 Characterization of the B-CDs: (A) UV-Vis absorption spectra and fluorescence emission spectra (the inset are the photographs of B-CDs in ambient light (left) and under irradiation by UV light (right)); (B) fluorescence intensity and (C) fluorescencent decay curve of B-CDs in the absence and presence of PNPP (100 μ M), and in the presence of PNPP (100 μ M) + ALP (10 U/L). (D) TEM image; (E) XRD pattern and (F) XPS of CDs. (excitation source: DeltaDiode 320 nm, time range: 400 ns, the data is fitted with the second order exponential decay).

Fig. S2 Characterization of the G-CDs: (A) UV-Vis absorption spectra and fluorescence emission spectra (the inset are the photographs of G-CDs in ambient light (left) and under irradiation by UV light (right)); (B) fluorescence intensity and (C) fluorescencent decay curve of G-CDs in the absence and presence of PNPP (100 μ M), and in the presence of PNPP (100 μ M) + ALP (10 U/L). (D) TEM image; (E) XRD pattern and (F) XPS of CDs. (excitation source: DeltaDiode 320 nm, time range: 200 ns, the data is fitted with the second order exponential decay).

1

Fig. S3 Characterization of the G-CdTe QDs: (A) UV-Vis absorption spectra and fluorescence emission spectra (the inset are the photographs of G-CdTe QDs in ambient light (left) and under irradiation by UV light (right)); (B) fluorescence intensity and (C) fluorescencent decay curve of G-CdTe QDs in the absence and presence of PNPP (100 μ M), and in the presence of PNPP (100 μ M) + ALP (10 U/L). (D) TEM image of QDs with a high-magnification TEM image shown in the inset. (excitation source: DeltaDiode 320 mm, time range: 800 ns, the data is fitted with the second order exponential decay).

Fig. S4 Characterization of the O-CdTe QDs: (A) UV-Vis absorption spectra and fluorescence emission spectra (the inset are the photographs of O-CdTe QDs in ambient light (left) and under irradiation by UV light (right)); (B) fluorescence intensity and (C) fluorescencent decay curve of O-CdTe QDs in the absence and presence of PNPP (100 μ M), and in the presence of PNPP (100 μ M) + ALP (10 U/L). (D) TEM image of QDs with a high-magnification TEM image shown in the inset. (excitation source: DeltaDiode 320 nm, time range: 800 ns, the data is fitted with the second order exponential decay.)

Fig. S5 Characterization of the R-CdTe QDs: (A) UV-Vis absorption spectra and fluorescence emission spectra (the inset are the photographs of R-CdTe QDs in ambient light (left) and under irradiation by UV light (right)); (B) fluorescence intensity and (C) fluorescencent decay curve of R-CdTe QDs in the absence and presence of PNPP (100 μ M), and in the presence of PNPP (100 μ M) + ALP (10 U/L). (D) TEM image of QDs with a high-magnification TEM image shown in the inset. (excitation source: DeltaDiode 320 mm, time range: 800 ns, the data is fitted with the second order exponential decay).

Fig. S6 Characterization of the Cu-CdS QDs: (A) UV-Vis absorption spectra and fluorescence emission spectra (the inset are the photographs of R-CdTe QDs in ambient light (left) and under irradiation by UV light (right)); (B) fluorescence intensity and (C) fluorescencent decay curve of R-CdTe QDs in the absence and presence of PNPP (100 μ M), and in the presence of PNPP (100 μ M) + ALP (10 U/L). (D) TEM image of QDs with a high-magnification TEM image shown in the inset. (excitation source: SpectraLED 355 nm, time range: 340 μ s, the data is fitted with the third order exponential decay).

Fig. S7 Characterization of the Mn-ZnS QDs: (A) UV-Vis absorption spectra and
fluorescence emission spectra (the inset are the photographs of Mn-ZnS QDs in ambient
light (left) and under irradiation by UV light (right)); (B) TEM image of the Mn-ZnS QDs,
with a high-magnification TEM image shown in the inset; and (C) the EDX of the Mn-ZnS
QDs.

Fig. S8 Screening of the IFE pair based on tunable excitation of various QDs: the left part
shows the overlap between the absorption of PNP (black lines) and the excitation of various
QDs (blue lines), and the exact overlapped area was shadowed; the right panel shows the
corresponding normalized fluorescence intensity of QDs (1), quenched fluorescence
intensity in the presence of PNP (2), and the restored fluorescence intensity due to ALP
enzymatic reaction (3).

Fig. S9 The spectra overlap of excitation and absorbance. The A_{overlap} stands the part of
overlap (gray shadow), the A₁ stands the remaining part of excitation (blank shadow),
A_{overlap} plus A₁ is the A_{excitation}. Therefore, the A_{overlap}/A_{excitation} is the overlap ratio of total part
of the excitation.

7

8 5. Optimization of experimental conditions

9

10 Fig. S10 Optimization of the (A) concentration of PNPP and (B) pH in the conditions of
11 incubation with ALP and Mn-ZnS QDs. The buffer solution is 0.01 M Tris-HCI.

2 Fig. S11 Phosphorescence intensity of Mn-ZnS QDs at different pH of Tris-HCl buffer.

6

1 6. Comparison of analytical performance for ALP detection

Analytical methods	Principle of sensing	LOD (U/L)	References
Colorimetric assay	cerium oxide-based redox reaction	0.04	7
Fluorescence assay	CDs quenched with Cu ²⁺	1.1	8
Fluorescence assay	CDs quenched with Ce ³⁺	1.4	9
Fluorescence assay	AuNCs quenched with Cu ²⁺	0.1	10
Fluorescence assay	AuNCs-based redox reaction	0.002	11
Fluorescence assay	AuNCs-based IFE	0.002	12
Fluorescence assay	CDs-based IFE	0.001	6
Fluorescence assay	Fluorescence dye based sol-gel transition	60	13
Ratiometric	Betaine-modified PEI-based	100	14
fluorescence assay	Excimer/Monomer Conversion	100	
Phosphorescence spectroscopy	Mn-ZnS QDs-based IFE	4 × 10 ⁻⁴	This work

2 Table S1 Analytical performance of some assays for ALP detection.

3

4 7. Analytical performance of UV-Vis assay for ALP (Escherichia coli)

5 detection

Fig. S13 Analytical performance of the UV-Vis assay for ALP detection: (A) plots of the
increased absorbance as a function of ALP concentration; and (B) UV-Vis spectra of PNPP
and PNP in the presence of increasing amounts of ALP.

- 10
- 11

1 8. Interferences of relevant metal ions and other biomolecules

2 Table S2 Effect of co-existing substances on the quenched RTP intensity of Mn-doped

Existing substances	Concentration	Changed RTP intensity (%)
Tryptophan	100 µM	0.4
Isoleucine	100 µM	-1.3
Glycine	100 µM	4.4
Lysine	100 µM	5.6
L-cysteine	20 µM	3.0
Valine	100 µM	-2.7
Proline	100 µM	3.5
Alanine	50 µM	8.2
Leucine	100 µM	6.8
Glutamic acid	100 µM	4.0
Asparagine	100 µM	8.1
Arginine	50 µM	5.2
Methionine	100 µM	5.4
Threonine	100 µM	4.4
Tyrosine	50 µM	5.4
Asparaginic acid	100 µM	2.5
Histidine	100 µM	5.3
Ascorbic acid	1 µM	3.5
GSH	1 µM	7.9
Glucose	1 mM	5.7
Ca ²⁺	100 µM	-3.7
Cu ²⁺	200 nM	-1.7
Fe ³⁺	500 nM	-2.3
K ⁺	1 mM	-2.3
Mg ²⁺	50 µM	1.4

3 ZnS QDs by 1 U/L alkaline phosphatase.

Mn ²⁺	500 nM	-3.0
Na⁺	1 mM	5.6
Zn ²⁺	2 μΜ	1.9

2 9. L-Cys capped Mn-ZnS QDs detect ALP based on IFE assay.

3

4 Fig. S14 Phosphorescence intensity of L-Cys-Mn-ZnS QDs in the absence and presence

5 of PNPP (100 μ M), and in the presence of PNPP (100 μ M) + ALP (10 U/L).

1 10. Analytical performance of UV-Vis assay for ALP (human) detection

2

3 Fig. S15 Analytical performance of the UV-Vis assay for ALP (human) detection with the

- 4 LOD of 5 U/L.
- 5

6 11. ALP detection in human serum samples

7 Table S3 Alkaline phosphatase detection in human serum samples by this probe and

8 testing in hospital.

Samples	ALP amount (U/L)by this probe	ALP amount (U/L)test in hospital
Serum 1	78.3 ± 3.5	79
Serum 2	125.9 ± 8.6	130
Serum 3	46.3 ± 3.5	49
Serum 4	97.4 ± 6.9	91
Serum 5	108.1 ± 12.9	105
Serum 6	89.0 ± 9.0	96
Serum 7	354.6 ± 10.0	341
Serum 8	290.9 ± 29.8	292
Serum 9	2591.8 ± 69.3	2599
Serum 10	226.8 ± 6.9	220
Serum 11	90.3 ± 6.9	88

1 12. Fluorescence, phosphorescence and UV-Vis background of serum

2 samples

1 References

- 2 (1) Zhang, J.; Zhu, A.; Zhao, T.; Wu, L.; Wu, P.; Hou, X. J. Mater. Chem. B 2015, 3, 5942-5950.
- 3 (2) Zhang, F.; He, X.-W.; Li, W.-Y.; Zhang, Y.-K. J. Mater. Chem. 2012, 22, 22250-22257.
- 4 (3) Sheng, Z.; Han, H.; Hu, X.; Chi, C. Dalton Trans. 2010, 39, 7017-7020.
- 5 (4) Ying, E.; Li, D.; Guo, S.; Dong, S.; Wang, J. *Plos One* **2008**, 3, e2222.
- 6 (5) Zhu, S.; Meng, Q.; Wang, L.; Zhang, J.; Song, Y.; Jin, H.; Zhang, K.; Sun, H.; Wang, H.;
- 7 Yang, B. Angew. Chem. Int. Ed. 2013, 52, 3953-3957.
- 8 (6) Li, G.; Fu, H.; Chen, X.; Gong, P.; Chen, G.; Xia, L.; Wang, H.; You, J.; Wu, Y. *Anal. Chem.*9 2016, 88, 2720-2726.
- 10 (7) Hayat, A.; Gonca, B.; Andreescu, S. Biosens. Bioelectron. 2014, 56, 334-339.
- 11 (8) Qian, Z. S.; Chai, L. J.; Huang, Y. Y.; Tang, C.; Jia Shen, J.; Chen, J. R.; Feng, H. *Biosens.*
- 12 Bioelectron. 2015, 68, 675-680.
- 13 (9) Qian, Z.; Chai, L.; Tang, C.; Huang, Y.; Chen, J.; Feng, H. *Anal. Chem.* **2015**, *87*, 2966-14 2973.
- 15 (10) Chen, Y.; Li, W.; Wang, Y.; Yang, X.; Chen, J.; Jiang, Y.; Yu, C.; Lin, Q. J. Mater. Chem.
- 16 C **2014**, *2*, 4080-4085.
- 17 (11) Hu, X. L.; Wu, X. M.; Fang, X.; Li, Z. J.; Wang, G. L. *Biosens. Bioelectron.* **2016**, *77*, 666-18 672.
- 19 (12) Liu, H.; Li, M.; Xia, Y.; Ren, X. ACS Appl. Mater. Interfaces 2017, 9, 120-126.
- 20 (13) Dong, L.; Miao, Q.; Hai, Z.; Yuan, Y.; Liang, G. Anal. Chem. 2015, 87, 6475-6478.
- 21 (14) Zheng, F.; Guo, S.; Zeng, F.; Li, J.; Wu, S. Anal. Chem. 2014, 86, 9873-9879.