Supporting Information

High-energy asymmetric supercapacitors based on free-standing hierarchical

Co-Mo-S nanosheets with enhanced cycling stability

Jayaraman Balamurugan,^a Chao Li,^a Shaik Gouse Peera,^a Nam Hoon Kim,^a and

Joong Hee Lee ^{a, b*}

^aAdvanced Materials Institute of BIN Convergence Technology (BK21 Plus Global) & Dept.

of BIN Convergence Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea.

^bCarbon Composite Research Centre, Department of Polymer –Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756, Republic of Korea

Fig. S1. (a, b) SEM pictures with different magnification of hierarchical Co-Mo-S NS and (c–f) corresponding EDS elemental mapping of Co-Mo-S NS.

Fig. S2. (a) SEM image, (b) EDAX spectrum of Co-Mo LDH, (c) SEM image, and (d) EDAX spectrum of Co-Mo-O NS.

Fig. S3. AFM image and its height profile of hierarchical Co-Mo-S NS representing thickness of few nm and width > 3 μ m.

Fig. S4. XRD pattern of as-synthesized Co-Mo LDH and Co-Mo-O NS.

The XRD pattern of the Co-Mo LDH and Co-Mo-O NS are illustrated in Fig. S4. In case of the Co-Mo-O NS, the diffraction peaks at 2θ ~26.4°, 31.9° , 33.6° , 36.3° , 43.9° , 47.0° , 53.9° , 58.5° and 64.5° , corresponding to the (002), (-131), (-222), (400), (-223), (241), (440), (024) and (243) planes of the monoclinic-phase for CoMoO₄ (JCPDS card no. 21-0868), respectively, suggesting that the excellent crystallinity of the CoMoO₄ NS architectures. In addition, the XRD pattern of Co-Mo LDH reveals that highly crystalline nature with multiple diffraction peaks with corresponding planes.

Fig. S5. XPS spectra of Co-Mo LDH and Co-Mo-O NS.

Fig. S6. (a, b) Co 2p spectra, (c, d) Mo 3d spectra, and (e, f) O 1s spectra of Co-Mo LDH and Co-Mo-O NS, respectively.

Fig. S7. Pore size distribution of as-synthesized Co-Mo LDH, Co-Mo-O and Co-Mo-S NS.

Fig. S8. CV curves of (a) Co-Mo LDH, (b) Co-Mo-O electrodes at the scan rate of 5-50 mV s⁻¹, GCD curves of (c) Co-Mo LDH, and (d) Co-Mo-O electrodes at the current densities of 1, 3, 5, 7, 9, 12 and 20 mA cm⁻².

Fig. S9. (a) GCD curves of Co-Mo LDH, Co-Mo-O, and Co-Mo-S electrodes at the current density of 1 mA cm⁻², (b) Areal capacitance *vs.* current density of Co-Mo LDH, and Co-Mo-O, and Co-Mo-S electrodes.

Fig. S10. EIS of Co-Mo LDH, Co-Mo-O, and Co-Mo-S electrodes.

Fig. S11. (a, b) SEM images with different magnifications, and (c, d) low and high magnification TEM images of the Co-Mo-S NS, inset showing SAED pattern of Co-Mo-S NS (after stability test).

Fig. S12. CV curves of the Co-Mo-S electrode at 20 mV s⁻¹ (before and after stability test).

Fig. S13. (a) SEM image, (b) TEM image of NGNS, inset showing SAED pattern of NGNS.

Fig. S14. High-resolution XPS of (a) N 1s, and (b) C 1s spectra for NGNS.

Typical XPS spectra of as-prepared NGNS are shown in Figure S14. The chemical compositions of the NGNS was calculated by taking C 1s, N 1s and O 1s and their atomic sensitivity factors into account. The composition ratios of C, N and O of this as-prepared NG material are 83.56%, 8.89%, and 7.55%, respectively. The deconvolution analysis of N 1s spectrum of NGNS (Fig. S14a) is composed of pyridine N, pyrrolic N, graphitic N, and oxidized N at 398.4, 400.3, 401.2 and 402.3 eV, respectively.¹ The broad pyridinic peak attributed from the nitrogen binds with two neighboring sp² carbon atoms of the graphene matrices.² This result confirms that the successful doping and introduction of N functional groups into graphene network, which is well-consistent with the previous reportes.^{3, 4} In the C 1s spectrum of NG (Fig. S14b), deconvolution of the core-level C 1s spectrum shows five types of carbon bonds: sp² and sp³ C–C (~284.6 eV), C–N (~285.7 eV), C–O (~286.5 eV), C=O (~287.9 eV), and C(O)O (~289.0 eV).

Fig. S15. Electrochemical properties of the NGNS: (a) CV curves of NGNS at different scan rates from 20 to 200 mV s⁻¹, (b) GCD curves of NGNS at different current densities of 1–50 A g^{-1} , (c) Specific capacitance *vs* current density of the NGNS electrode, and (d) Cycling performance of NGNS at a current density of 12 A g^{-1} , inset showing charge-discharge curves of NGNS electrode curves from 19991th to 20000th cycles.

Fig. S16. EIS of NGNS electrode during the cycling performance.

Fig. S17. Schematic illustration of the Co-Mo-S//NGNS ASC device.

Fig. S18. Co-Mo-S (cathode) and NGNS (anode) measured at a scan rate of 20 mV s⁻¹ in a three-electrode cell configuration.

Fig. S19. CV curves of the ASC with different potential windows form 0.8-1.6 V at the scan rate of 50 mV s⁻¹, (b) GCD curves of the ASC with different potential windows form 0.8-1.6 V at the current density of 3 A g⁻¹.

Fig. S20. GCD curves of ASC during the cycling performance (from the 1st to 10th cycles).

Fig. S21. Cycling performance of ASC at the current density of 10 A g^{-1} (up to 50000 cycles).

Fig. S22. Nyquist impedance spectra of ASC during the cycling performance (before and after stability test).

Fig. S23. Regone plot (energy density vs. power density vs. charge time) of ASC device.

Table S1. Elemental composition of Co-Mo LDH, Co-Mo-O, and Co-Mo-S NS estimated fromXPS and ICP-AES.

Sample	Co (at. %)	Mo (at. %)	S (at. %)	O (at. %)
Co-Mo LDH	32.85	31.49	-	23.98
Co-Mo-O NS	31.18	30.82	-	31.36
Co-Mo-S NS	32.56	31.09	23.21	9.97

Co, Mo, S and O contents were detected by XPS analysis and ICP-AES measurements.

Materials	Specific capacitance (F g ⁻¹)	Areal capacitance (F cm ⁻²)	Current load or scan rate	Electrolyte	Stability	References
Co ₉ S ₈ /Ni foam	1645	_	3 A g ⁻¹	2 M KOH	94.4% (2000 cycles)	5
CoS ₂ hollow sphere	1301	_	1 A g ⁻¹	2 M KOH	90.1% (2000 cvcles)	6
CoS ₂ nanowire	828	1.27	0.01V s ⁻¹	6 M KOH	97.5% (4250 cycles)	7
MoS_2 nanosheets	589	_	0.5 A g ⁻¹	1M H ₂ SO ₄	104% (2000 cvcles)	8
MoS ₂ /PPy	695	_	$0.5 \ A \ g^{-1}$	1 M KCl	85% (4000 cycles)	9
MoS2@PANI	853	-	1 A g ⁻¹	0.5 M H ₂ SO ₄	91% (4000 cycles)	10
Ni ₃ S ₂ @MoS ₂ core-shell NR	848	_	5 A g ⁻¹	2 M KOH	91% (2000 cycles)	11
Ni ₃ S ₄ @MoS ₂ core-shell NS	1441	_	2 A g ⁻¹	6 M KOH	90.7 % (3000 cycles)	12
NiCo ₂ S ₄ hollow spheres	1036	_	1 A g ⁻¹	6 M KOH	87 % (2000 cycles)	13
NiCo ₂ S ₄ hollow nanotubes	1154	_	1 A g ⁻¹	2 M KOH	92.8 % (8000 cycles)	14
Ni-Co-S	1418	_	$5 \mathrm{A} \mathrm{g}^{-1}$	1 M KOH	-	15
FeCo ₂ S ₄ – NiCo ₂ S ₄ composite	1519	3.50	5 mA cm ⁻²	3 М КОН	95.1% (5000 cycles)	16
Co-Mo-S NS	2343	5.39	1 mA	3 M KOH	96.6 %	Present

 Table S2. Electrochemical properties of the hierarchical Co-Mo-S NS comparison with

 reported transition metal sulfides based electrodes.

cm ⁻²	(20000 cycles)	work

Reported ASC Device	Electrolyte	Device Window (V)	Energy Density (Wh kg ⁻¹)	Power Density (W kg ⁻ ¹)	Stability (Cycle No.)	Reference
CoS/Graphene//AC	2М КОН	0-1.6	29	800	70% (10000 cycles)	17
MnO ₂ /GNS //MoS ₂ /GNS	PVA/Na ₂ SO ₄ gel electrolyte	0-2.0	78.9	284.1	90 % (5000 cycles)	18
Ni-Co-S/G//PCNS	6 M KOH	0-1.6	43.3	800	85% (10000 cycles)	19
NiCo ₂ S ₄ /NCF//OMC/NCF	6 M KOH	0-1.6	45.5	512	70.4% (10000 cycles)	20
FeCo ₂ S ₄ //3D PNG	KOH/PVA gel electrolyte	0-1.6	76.1	755	82% (10000 cycles)	21
CuCo ₂ S ₄ -HNN//AC	3 М КОН	0-1.6	44.1	800	94.1% (6000 cycles)	22
NiMoO ₄ //AC	2 M KOH	0-1.7	60.9	850	85.7% (10000 cycles)	23
Co ₃ O ₄ @CoMoO ₄ //CNTs	PVA/ KOH	0-1.6	45.2	400	98.5% (3000 cycles)	24
CoMoO4@NiMoO4//AC	2 M KOH	0-1.6	28.7	267	99% (3000 cycles)	25
Co-Mo-S//NGNS	PVA/KOH	0-1.6	89.6	789	86.5% (50000 cycles)	Present work

 Table S3. ASCs Device properties comparison with reported literatures.

Notes and references

- 1. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, Nano Lett., 2009, 9, 1752-1758.
- 2. B. Stohr, H. P. Boehm and R. Schlogl, *Carbon*, 1991, **29**, 707-720.
- K. Parvez, S. Yang, Y. Hernandez, A. Winter, A. Turchanin, X. Feng and K. Mullen, ACS Nano, 2012, 6, 9541-9550.
- Z. Wen, X. Wang, S. Mao, Z. Bo, H. Kim, S. Cui, G. Lu, X. Feng and J. Chen, *Adv. Mater.*, 2012, 24, 5610-5616.
- 5. H. Li, Y. Gao, Y. Shao, Y. Su and X. Wang, Nano Lett., 2015, 15, 6689-6695.
- S. Peng, L. Li , H. Tan, R. Cai, W. Shi, C. Li, S. G. Mhaisalkar, M. Srinivasan, S. Ramakrishna and Q. Yan, *Adv. Funct. Mater.*, 2014, 24, 2155-2162.
- R. Ren, M. S. Faber, R. Dziedzic, Z. Wen, S. Jin, S. Mao and J. Chen, *Nanotechnology*, 2015, 26, 494001.
- H. Ji, C. Liu, T. Wang, J. Chen, Z. Mao, J. Zhao, W. Hou and G. Yang, *Small*, 2015, 11, 6480-6490.
- H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang and Z. Tang, *Adv. Mater.*, 2015, 27, 1117-1123.
- J. Zhu, W. Sun, D. Yang, Y. Zhang, H. H. Hoon, H. Zhang and Q. Yan, *Small*, 2015, 11, 4123-4129.
- J. Wang, D. Chao, J. Liu, L. Li, L. Lai, J. Lin and Z. Shen, *Nano Energy*, 2014, 7, 151-160.
- Y. Zhang, W. Sun, X. Rui, B. Li, H. T. Tan, G. Guo, S. Madhavi and Y. Zong, Q. Yan, Small, 2015, 11, 3694-3702.
- L. Shen, L. Yu, H. B. Wu, X. Y. Yu, X. Zhang and X. W. Lou, *Nat. Commun.*, 2015, 6, 6694-6701.
- X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang and M. Liu, Nano Energy, 2015, 16, 71-80.

- 15. W. Chen, C. Xia and H. N. Alshareef, ACS Nano, 2014, 8, 9531-9541.
- 16. J. Zhu, S. Tang, J. Wu, X. Shi, B. Zhu and X. Meng, Adv. Energy Mater. 2016, 1601234.
- 17. J. Shi, X. Li, G. He, L. Zhang and M. Li, J. Mater. Chem. A, 2015, 3, 20619-20626.
- 18. X. Yang, H. Niu, H. Jiang, Q. Wang and F. Qu, J. Mater. Chem. A, 2016, 4, 11264-11275.
- J. Yang, C. Yu, X. Fan, S. Liang, S. Li, H. Huang, Z. Ling, C. Hao and J. Qiu, *Energy Environ. Sci.*, 2016, 9, 1299-1307.
- L. Shen, J. Wang, G. Xu, H. Li, H. Dou and X. Zhang, Adv. Energy Mater., 2015, 5, 1400977.
- 21. S. Tang, B. Zhu, X. Shi, J. Wu and X. Meng, Adv. Energy Mater., 2017, 7, 1601985.
- 22. S. E. Moosavifard, S. Fani and M. Rahmanian, Chem. Commun., 2016, 52, 4517-4520.
- 23. S. Peng, L. Li, H. Wu, S. Madhavi and X. W. Lou, Adv. Energy Mater., 2015, 5, 1401172.
- 24. J. Wang, X. Zhang, Q. Wei, H. Lv, Y. Tian, Z. Tong, X. Liu, J. Hao, H. Qu, J. Zhao, Y. Li and L. Mai, *Nano Energy*, 2016, **19**, 222-233.
- Z. Zhang, H. Zhang, X. Zhang, D. Yu, Y. Ji, Q. Sun, Y. Wang and X. Liu, *J. Mater. Chem. A*, 2016, 4, 18578-18584.