Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supplementary information

A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of columnar phase

Hongfei Li,^a Zhenhua Yang,^a Cheng Pan,^a Naisheng Jiang,^a Sushil K. Satija,^b Di Xu,^a Dilip Gersappe,^a Chang-Yong Nam,^{*,c} and Miriam H. Rafailovich *a

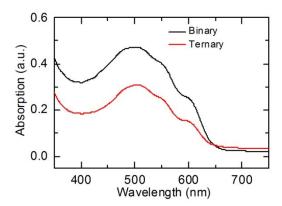
^aDepartment of Materials Science and Engineering, Stony Brook University, Stony Brook, New York 11794, United States

^bCenter for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.

^cCenter for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States

*E-mail: miriam.rafailovich@stonybrook.edu (M.H.R.), cynam@bnl.gov (C.-Y.N)

PCBM Weight Percentage Calculation


The weight fraction of PCBM (Φ) along the perimeter of the PMMA columns was calculated by using the

$$\Phi = \frac{V_c \rho_c}{V_t \rho_t}$$
following equation: , , where V_c is the volume of cylindrical shell of PCBM along the PMMA columns, ρ_c is the density of PCBM, V_t is the volume of active layer, ρ_t is the concentration of PCBM in the

blend. We assume the PCBM aggregation layer along the PMMA columns as a cylindrical shell: $V_c = 2\pi r h \Delta$, where r is the column radius, h is the height of the cylindrical shell, Δr is the interfacial width of PCBM aggregation layer.

Domain Size Calculation by Scherrer Equation

The domain size of crystalline phase (e.g., P3HT, PCBM) can be calculated by the Scherrer equation using the full width at half maximum of a corresponding X-ray scattering peak: $d = \frac{0.9\lambda}{\beta\cos\theta}, \text{ where d is the size of crystalline domain, } \lambda \text{ is the X-ray wavelength, } \beta \text{ is the full width at half maximum of a diffraction peak, and } \theta \text{ is the peak position.}$

Fig. S1. Ultraviolet-visible light absorption spectra of ~210 nm thick thin film samples after thermal annealing at 150 °C for 1 hr in ~10 mTorr vacuum: P3HT:PMMA:PCBM ternary blend (red line); P3HT:PCBM binary blend (black line). The integrated absorption of the ternary blend in the measurement range is ~60% of that for the binary blend, which is consistent with the geometric volume fraction of photoactive P3HT:PCBM in the ternary blend sample.

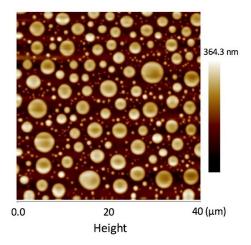


Fig. S2. Topographical AFM image of P3HT:PMMA:PCBM ternary BHJ blend thin film (1:1:1 wt. ratio, spin-cast on the PEDOT:PSS-coated ITO substrate, annealed at 150 °C for 1 hr in ~10 mTorr vacuum) with top Al contact. The scan size is $40 \ \mu m \times 40 \ \mu m$.

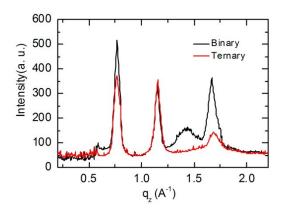



Fig. S3. Linear X-ray scattering intensity profile along the q_z axis obtained from the two-dimensional GIWAXS data measured from the binary P3HT:PCBM and ternary P3HT:PMMA:PCBM blend thin films prepared on Si. The films were annealed at 150 °C for 4 hr in ~10 mTorr vacuum before the measurement.

Fig. S4. Summary of percolating column structure formation for different simulation parameter settings. Three simulations were conducted for each combination of film thickness and ϵ Y and N, respectively, denote the cases when percolating column structure is observed and not observed.

Table S1. Ternary blend solar cell photovoltaic parameters at different blend layer thicknesses

Thickness (nm)	V _{OC} (V)	J _{SC} (mA/cm ²)	FF	PCE
560.2 ± 2.55	0.615 ± 0.01	7.7247 ± 1.21	$52.4 \pm 0.8\%$	$2.488 \pm 0.56\%$
486.4 ± 2.35	0.625 ± 0.005	8.9235 ± 1.40	$53.2 \pm 1.1\%$	$2.968 \pm 0.57\%$
298.8 ± 1.42	0.625 ± 0.005	9.4326 ± 0.42	$53.3 \pm 1.3\%$	$3.14 \pm 0.25\%$
283.8 ± 1.14	0.615 ± 0.005	7.1042 ± 0.75	$55.3 \pm 0.6\%$	$2.41 \pm 0.15\%$
217.2 ± 0.75	0.615 ± 0.009	6.0629 ± 0.19	$47.5 \pm 1.8\%$	$1.77 \pm 0.12\%$
195.5 ± 0.64	0.615 ± 0.006	5.4106 ± 0.59	$47.7 \pm 1.9\%$	$1.59 \pm 0.14\%$
155.3 ± 0.51	0.615 ± 0.01	5.3796 ± 0.14	$45.3 \pm 1.6\%$	$1.51 \pm 0.13\%$

Table S2. Binary blend solar cell photovoltaic parameters at different blend layer thicknesses

Thickness (nm)	$V_{OC}(V)$	J _{SC} (mA/cm ²)	FF	PCE
320.4 ± 1.78	0.595 ± 0.01	6.0622 ± 0.25	$53.6 \pm 1.8\%$	$1.934 \pm 0.18\%$
231.8 ± 1.65	0.575 ± 0.02	6.3613 ± 0.74	$54.3 \pm 3.1\%$	$1.989 \pm 0.42\%$
221.4 ± 1.37	0.585 ± 0.005	6.5416 ± 0.99	$54.1 \pm 3.3\%$	$2.069 \pm 0.15\%$
167.2 ± 1.16	0.605 ± 0.005	7.0661 ± 0.36	$50.1 \pm 0.7\%$	$2.1459 \pm 0.16\%$
126.8 ± 0.55	0.605 ± 0.006	7.6671 ± 0.09	$51.4 \pm 1.4\%$	$2.3860 \pm 0.11\%$
111.8 ± 0.44	0.605 ± 0.005	8.4706 ± 0.24	$49.4 \pm 2.8\%$	$2.5314 \pm 0.08\%$
98.8 ± 0.31	0.595 ± 0.01	6.4094 ± 0.14	$51.9 \pm 1.7\%$	$1.9791 \pm 0.12\%$