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S1. MCED fabricating process for microhelices

S1.1 Fabricating process for microhelices

Figure S1. Fabricating process for microhelices. (a) and (d) Clean glass for substrate. (b) and (e) The gold 
thin film is coated by UV photolithography and e-beam evaporation technology. (c) Two micohelices are 
grown on two gold electrodes respectively. (f) A single microhelix is grown on the gold electrode.

S2.2 Fabricating copper microhelices via MCED
The direct writing process of a single microhelix can be divided into two steps. Firstly, the 

micropipette contacts with the substrate slowly due to the high-precision nanopositioning 
stage moving up. In order to avoid damaging the micropipette, the first step is relatively slow 
and generally it need to take about 7-10 minutes. Then, the microhelix is deposited at the 
substrate and the nanopositioning stage starts to move down at the same time. At this process, 
the nanopositioning stage is moved with a linear velocity of 0.13 µm/s along the circular arc 
of 5 µm diameter at the plane of XY and a linear velocity of 0.16 µm/s along the Z axis (the 
coordinate system shown in Figure S2). The coordinate system is shown in Figure S2. The 
high-precision nanopositioning system and the DC power system are controlled by LabVIEW. 
The DC power system is set with a constant current at 2.8~6.0 nA, which the microhelices 
diameter range from 0.8~1.6 µm. The varied voltage value is used as a trigger condition to 
convert different steps. Number of helical turns can be customized. Figure S3 shows some 
microphotographs of fabricating process of microhelices switch structure.

Figure S2 The coordinate system of fabricating process.
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Figure S3 The microphotographs of fabricating process of microhelices switch structure.

Figure S4 The TEM image of copper microwires fabricated by MCED

S2. Analytical description of microhelix bending

S2.1 Analytical models for the bending behavior of a helical wire
For the lateral vibration of helical spring, the spring subjecting to transverse force and 

bending moment is schematically shown in Fig.S5, where p is the pitch, φ is the mean helical 

diameters, H is the axial free length, l is the total length of the wire, r is the weight density of 
Cu wires, A=d2/4 is the wire cross section area, t is time and  is the polar coordinate of the 
spring. The following equation can be written:

 (S1)
𝐻 = 𝑙 ∙ 𝑠𝑖𝑛 𝛼 =

𝑛𝜋𝐷
𝑐𝑜𝑠𝛼

𝑠𝑖𝑛𝛼
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Figure S5 Bending of a helical spring
Under the assumption of using wire with circular cross-section and linear deformation, the 

work done by the torque M can be written as

 (S2)
𝑈 =

1
2

𝐻
𝑟

𝑀

when the axially helical spring loaded by a distributed load, a curvature radius r originates 

only from helix bending. Considering a differential length ds=φd/2cos along centerline of 

wire helix, the total potential energy of the spring is found by carrying out the following 
integration:

 (S3)
𝑊 =

2𝑛𝜋

∫
0

[𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝛼 + 𝑐𝑜𝑠2𝜃
2𝐸𝐼

+
𝑠𝑖𝑛2𝜃𝑠𝑖𝑛2𝛼

2𝐺𝐽 ]𝑀2𝑑𝑠

Since U=W and , Eqs. (S2) and (S3) can be reduced to

1
𝑟

=
𝑑𝑦2

𝑑𝑧2

(S4)

𝑑4𝑦

𝑑𝑥4
=

𝑞
𝑠𝑖𝑛𝛼[1 + 𝑠𝑖𝑛2𝛼

2𝐸𝐼
+

𝑐𝑜𝑠2𝛼
2𝐺𝐽 ]

where the inertial force q can be written as

(S5)2

2

t
y

H
lAq






By substituting Eqs. (S5) into Eqs. (S4), 

(S6)

𝑑4𝑦

𝑑𝑥4
=‒

1
𝑠𝑖𝑛𝛼[1 + 𝑠𝑖𝑛2𝛼

2𝐸𝐼
+

𝑐𝑜𝑠2𝛼
2𝐺𝐽 ]𝐴𝜌𝑙

𝐻
∙

∂2𝑦

∂𝑡2

For a helix fixed at one end and free at another, as shown in Fig. S1, the boundary conditions 
at the fixed end (x=0) are

𝑦 = 0         𝑎𝑛𝑑      
∂𝑦
∂𝑥

= 0        (𝑥 = 0)

the boundary conditions at the fixed end (x=H) are for 

https://www.baidu.com/link?url=hKhYbc4zTgwcyfxXpIWJ1AJxv13XlWLfPchjcm9ZwWYQzbWQXj-O540kHdZS-LDxCY_10rIcAUUagJWQe0kHkzUAT-pKrXq1R7UuF6C8Qla&wd=&eqid=bcf8263200060d8400000004596da5e4
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∂2𝑦

∂𝑥2
= 0         𝑎𝑛𝑑      

∂3𝑦

∂𝑥3
= 0        (𝑥 = 𝐻)

By solving Eq. (6), the bending vibration frequency can be obtained by

(S7)

𝑓 =‒
𝑘2

𝑖𝐻

2𝜋𝑙

1

𝐴𝜌[1 + 𝑠𝑖𝑛2𝛼
2𝐸𝐼

+
𝑐𝑜𝑠2𝛼

2𝐺𝐽 ]
Combining Eq. (3) with Eq. (S7), the flexural rigidity also can be calculated by:

(S8)
𝑓 =‒

𝑘2
𝑖𝐻

2𝜋𝑙
𝐾1l

𝐴𝜌𝐻

(S9)
Hk

lAfK 4
1

2

1
)2( 



Fig. S6 gives an example of the computed response curve for the resonance of a copper 
microhelix with 1.1 µm diameter at its fundamental mode. The intrinsic frequency is about 
125 kHz.

110 115 120 125 130 135 140

A
m

pl
itu

de

Frequency (kHz)
Figure S6 The computed response curve for the resonance of a copper microhelix with 1.1 µm diameter at 

its fundamental mode. The intrinsic frequency is about 125 kHz.

S2.2 The flexural rigidity obtained by analyzing the dynamic resonance behavior of 

single copper microhelix
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S2.3 Effects of Wire Diameter on Flexural Rigidity

(1) Copper Microhelices
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By static deflections method, we obtain a flexural rigidity of 0.9×10-14 N·m2 for microhelix 
with d=1.2 µm; By dynamic resonance method, the bending stiffness is 0.6 x10-14 N·m2 for 
d=1.1 µm (see section 3.4). All these results fit well with the above theoretical relations. On 
the other way round, the dynamic resonance and deflections method can be used to estimate 
the mechanical properties of micro/nano-structures. We can obtain a Young’s modulus of 
115.8GPa for the MCED fabricated copper by Equ. (3). This agrees well with the 
nanoindentation results (119.5 GPa) and dynamic test of microwires (122.6 GPa, see Ref. 44).
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Figure S7. Effects of wire diameter on intrinsic frequency of copper microhelices

(2) Copper microwires
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S2.4 The Critical Load
According to the Theory of elastic stability[1] discussed by Stephen P. Timoshenko and James 
M. Gere, we obtain the following equation for the critical load:

K
B

A
B

A
B

BH
K

K
Fcr 






)1(2

)1(411 2

2
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Where K, A and B respectively are flexural, shearing, and compressive rigidities of unloaded 
spring. In this study, the value of E/G is about 2.68, which corresponds to Poisson’s ratio of 
0.34.
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S3. Comparison of mechanical properties for different microhelices
Table S1 Comparison of mechanical properties for different microhelices

Height(µm)
Pitch 
(µm)

Coil 
(µm)

Wire 
(µm)

Materials
Elastic stiffness 

(N/m)
Reference

s

20 2 0.84 0.12 Carbon 0.12 [2]

58 19.3 5 1.2 Copper 0.13±0.01 This work

6.3 1.2 1.6 0.2 tungsten-containing
 carbon (WC) 0.9-1.5 [3]

4.4 1.1 1.1 0.343 Si 8.75±0.04 [4]

2000 200 160 2.4 Si3N4 0.32 [5]

2000 500 800 150 CNT/Polymer
Nanocomposite 11.5 [6]
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