Supplementary information to "Scaling behavior of oxide-based threshold switching devices"

Dasheng Li,^a Jonathan M. Goodwill,^a James A. Bain,^b and Marek Skowronski^{*a}

^aCarnegie Mellon University, Dept. of Materials Science and Engineering, Pittsburgh, PA, USA. ^bCarnegie Mellon University, Dept. of Electric and Computer Engineering, Pittsburgh, PA, USA.

*Corresponding author: mareks@andrew.cmu.edu

Material	Density (kg·m⁻³)	Thermal conductivity (W·m ⁻¹ ·K ⁻¹)	Electrical conductivity (S·m ⁻¹)	Heat capacity (J·kg ⁻¹ ·K ⁻¹)	Relative permittivity
Si	2329	130	N/A	700	N/A
SiO2	2200	1.4	N/A	730	N/A
TiN ¹	5210	5	4E5	545	4
Au	19300	317	4.56E7	129	6.9
TaO _x ¹	8200	0.6	User defined	174	22
NbO ₂ ²	5800	Insulating phase: 0.12 Metallic phase: 2.0 ³	User defined	459.2	9.5
VO ₂ ⁴	4340	Insulating phase: 3.5 Metallic phase: 6 ⁵	User defined ⁶	690	367

Table S1. Material properties used in simulation

Reference

1 J. M. Goodwill, A. A. Sharma, D. Li, J. A. Bain and M. Skowronski, *ACS Appl. Mater. Interfaces*, 2017, **9**, 11704–11710.

2 C. Funck, S. Menzel, N. Aslam, H. Zhang, A. Hardtdegen, R. Waser and S. Hoffmann-Eifert, 2016. *Adv. Electron. Mater.*, 2016, **2**, 1600169.

3 S. K. Nandi, X. Liu, D. K. Venkatachalam and R. G. Elliman, J. Phys. D: Appl. Phys., 2015, 48, 195105.

4 D. Li, A. A. Sharma, D. K. Gala, N. Shukla, H. Paik, S. Datta, D. G. Schlom, J. A. Bain and M. Skowronski, ACS Appl. Mater. Interfaces, 2016, 8, 12908-12914.

5 Y. Zhang and S. Ramanathan, Solid-State Electron., 2011, 62, 161-164.

6 I. P. Radu, B. Govoreanu, S. Mertens, X. Shi, M. Cantoro, M. Schaekers, M. Jurczak, S. De Gendt, A. Stesmans, J. A. Kittl, M. Heyns and K. Martens, *Nanotechnology*, 2015, **26**, 165202.

7 Z. Yang, C. Ko, V. Balakrishnan, G. Gopalakrishnan and S. Ramanathan, *Phys. Rev. B*, 2010, **82**, 205101.