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Figure S1. Nanoporous gold particle prepared from sample with 34at% Au. (a) HRSEM image 

of a gold droplet after wet etching of germanium; top view. (b) HRSEM image of high 

magnification from (a). 
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(a)  

(b)  

Figure S2. (a) The temperature dependence of the ratio of grain boundary to bulk self-diffusion 

coefficients for different average grain sizes. (b) The temperature dependence of the ratio of 

dislocation to bulk self-diffusion coefficients for different dislocation densities. 
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Figure S3. A simplified model of nanoporous material as an array of parallel porous cylindrical 

channels of a radius R spaced at a distance l from each other in real incompressible material. 
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Figure S4. Stability time against sintering of cylindrical-like channels controlled by viscous 

flow of material under the action of porous surface tension; the bulk diffusion coefficient used 

𝐷𝑚
𝑚𝑖𝑛 = 1.1 exp (−

1.77𝑒𝑉

𝑘𝐵𝑇
) 𝑐𝑚2𝑠−1 , 𝐷𝑚

𝑚𝑎𝑥 = 6.0 exp (−
1.69𝑒𝑉

𝑘𝐵𝑇
) 𝑐𝑚2𝑠−1 ; the GB diffusion 

coefficient: 𝛿𝐷𝐺𝐵 = 3.1 ∙ 10−10 exp (−
0.88𝑒𝑉

𝑘𝐵𝑇
) 𝑐𝑚3𝑠−1. Initial channel radii: R0 = 25 nm (a) 

and R0 = 100 nm (b),  = 1.28 Jm-2, solid lines – single crystal, dashed lines – polycrystalline 

material with grain size d = 1 m or 0.1 m. Db is diffusion coefficient of bulk, DGB is grain 

boundary diffusion coefficient.  
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Note S1. 

The Ligament Size in Hypereutectic Au-Ge alloys. 

The ligament size of eutectic structure depends on the undercooling reached during eutectic 

solidification. The process limiting the solidification start is nucleation of a first eutectic two-

phase nucleus. In the case of hypoeutectic composition the slowest process is heterogeneous 

nucleation of Ge crystal nuclei, since Au crystal grows as continuation of existent single gold 

crystal.1 In the case of hypereutectic composition (excess of Ge) the limiting rate process is 

heterogeneous nucleation of Au crystals at liquid/solid Ge interface. As we know from previous 

investigation, the first nucleated gold crystal, together with growing Ge crystals form the 

eutectic structure consisting of one single gold crystal and rod-like Ge crystals. The growth rate 

of this structure is about 1030 ms-1,2 and thus the undercooling reached after nucleation of 

first nucleus is almost constant during solidification of micron-sized droplets. 

Probability of heterogeneous Au nucleation per unit time  is proportional to a surface of the 

liquid/Ge interface S and therefore kS  , where k is the proportionality coefficient. For round 

shape of Ge solid particles, this surface S is proportional to 2 3/f , where f is the volume fraction 

of the solid germanium phase: 

                                                           
1

eut

Ge Ge

eut

Ge

X X
f

X





,                                                               (1S) 

where GeX  is the total concentration of Ge in the alloy, eut

GeX is the eutectic concentration of Ge.  

In order to evaluate the influence of total germanium concentration on the final ligament size 

of eutectic structure, let us assume that the time needed for heterogeneous nucleation of a first 

gold crystal is inversely proportional to the surface S (since 1t t kS      ): 

                                                             ∆𝑡~𝑆−1~𝑓−2/3                                                          (2S) 

Then, the undercooling T , reached during cooling with the rate , T t   , is also 

proportional to 2 3/f  . According to theory of eutectic solidification of Turnbull,3, 4 the ligament 

size  is inversely proportional to the undercooling: 

                                                       * mol

tr

v

T S


   

 

4
2                                                           (3S) 

where   is the energy of the solid/solid (Au/Ge) interface, molv is the liquid molar volume, 

trS  is the entropy change in the L (eutectic)  Au(s) + Ge(s) transformation. Using the 

transformation entropy value for the Au-Ge system5 trS = 23.9 Jmol−1K−1,  = (0.20.4) 

Jm−2 and molv m 5 310 one can find that the ligament size 70 nm corresponds to undercooling 
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 1 5 10T K   , while the ligament size 220nm corresponds to  2 1 6 3 8T . . K   . Using 

Equations (1S)-(3S), one can write: 

                                                     

/

,

,

eut
Ge Ge

eut
Ge Ge

X XT

T X X

  
   

    

2 3

22 1

1 2 1

                                          (4S) 

For two investigated alloys, , . .GeX  1 0 33 0 01and , . .GeX  2 0 52 0 01. Using .eut
GeX  0 28

one can obtain / . .   2 1 2 4 3 4 , which is reasnably close to the experimental ratio of 

ligament sizes in these two alloys, 3.1 (see table 1). The higher concentration of Ge 

, . .GeX  3 0 66 0 01  should result in the ratio  / . .   3 1 3 9 4 6  with the ligament size 

270320 nm. However, the experimental values of ligament size for this sample vary 

significantly throughout the droplet around 500 nm (Figure S1), the behavior which is beyond 

the scope of this study. 

Therefore, the presence of larger amount of solid germanium phase before eutectic 

solidification results in smaller undercooling realizing during eutectic structure growth. That is 

why the larger total (hypereutectic) Ge concentration results in the larger ligament size of the 

eutectic structure. 
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Note S2. 

The Rate of Sintering of Cylindrical Porous Material 

Following to the approach of Mackenzie and Shuttleworth6 it is assumed that deformation 

during sintering is due to surface tension and that the porous material has homogeneous 

mechanical properties defined by an equation of state connecting the rate of shear strain with 

the shear stress. The material will also be assumed to be incompressible. In order to simplify 

the calculations, we consider a special model (Figure S2) in which all the pores are isolated 

equal cylindrical channels distributed at equal distance, l, from each other in the real solid 

material.  

Further approximation consists in replacing the material outside the cylindrical shell by the 

equivalent homogeneous material, in which a channel of radius R1 is surrounded by a cylindrical 

shell of the real incompressible material, out to some radius R2, and then by homogeneous 

continuum with the relative density, : 

 

                                          
2 2

1 21 1R / R                                                                        (5S) 

where 
2 2

1 2R / R   is the porosity; the condition that the channel and its shell have the same 

density as the array of channels is 
2R l   . 

The problem is now reduced to the calculation of the rate of decrease in radius R1 of the channel, 

surrounded by a shell of incompressible but shearable material, when a Laplacian pressure 

1/ R  is applied inside the channel,  is the surface tension. Because the material is supposed 

incompressible, the effect of surface tension in closing the pores is equivalent to the application 

of an external pressure 
1/ R to the surface of the compact.6 

If the rate of cylindrical radial strain is  , the condition of incompressibility shows that the rate 

of strain in the direction perpendicular to the cylinder axis is  and zero in the direction parallel 

to this axis. The rate of the channel closing is calculated by equating the energy dissipated by 

the flow of the material in the shell to the work done by the surface tension: 

                                                             0sdW dW

dt dt
                                                                (6S) 

The work done by the surface tension per unit time: 

 

                                       2 2s
R

dW d
RL L u

dt dt
                                                              (7S) 

where 
Ru dR / dt  is the radial velocity of the channel surface. The rate of energy dissipation 

per unit volume for the case of cylindrical symmetry can be found from the theory of' viscosity 
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as given, for example, by Lamb,7 24E    , and  the energy dissipated throughout the whole 

volume of the shell: 

                                   
0 0

2 20 4 8

R R

R R

dW
( )dV L ( )rdr

dt
                                                       (8S) 

Now, since the real material is incompressible, the radial velocity at any cylindrical radius is 

inversely proportional to the radius. Thus,  r Ru u R / r  and 
2

r
R

du R
u

dr r
    . Assuming a 

solid which has a Newtonian viscosity,  is independent of the rate of strain, from Equations 

(6S)-(8S) one can obtain: 

                                                   
1

2
Ru


 

 
                                                                         (9S) 

 

The volume of real material in the porous compact does not change. One can assume that also 

the total number of channels does not change during initial stage of annealing.  

Let us obtain a relation between the relative density and the time of sintering. The total area of 

pores per unit area perpendicular to the channel axis is  2 1R n /     and therefore: 

 
1 2

1
/

R / n      . Since 
Ru dR / dt , from Equation (9S) one can obtain: 

                                                
1 2

1
2

/d
n

dt

 
     

                                                         (10S) 

After integration the time of sintering is obtained as a function of final density : 

                
 

 
0

1 2

0 01 21 2
2

2 1

/

//

d
n ( t t ) arcsin arcsin





 
      

  
                            (11S) 

The time 
0t , from which the sintering is measured, is determined by the initial density 

0 . In 

the considered case of porous gold, 
0 0 7.   and 0 1arcsin   . 

The time of full sintering ( 1  ) can be estimated as  

                                         

1 2

0

2 2
/

s ft ( t t )
n

  
     

  
                                                      (12S) 

Using the usual expression for viscosity: 
2

b effl kT / D  , where 
bl  is the characteristic size of 

microstructure, one can obtain Equation 2 presented in the main text of the paper. 
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