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Figure S1. Nanoporous gold particle prepared from sample with 34at% Au. () HRSEM image
of a gold droplet after wet etching of germanium; top view. (b) HRSEM image of high
magnification from (a).
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Figure S2. (a) The temperature dependence of the ratio of grain boundary to bulk self-diffusion
coefficients for different average grain sizes. (b) The temperature dependence of the ratio of
dislocation to bulk self-diffusion coefficients for different dislocation densities.
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Figure S3. A simplified model of nanoporous material as an array of parallel porous cylindrical

channels of a radius R spaced at a distance | from each other in real incompressible material.
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Figure S4. Stability time against sintering of cylindrical-like channels controlled by viscous
flow of material under the action of porous surface tension; the bulk diffusion coefficient used

Dgl'lin =11 exp (— %) cm?2s~1 , Drrrrllax = 6.0 exp (— %) cm?s1 : the GB diffusion
B B

coefficient: §Dgp = 3.1- 107 % exp (— 0:4) cm3s~1, Initial channel radii: Ro = 25 nm (a)
B

and Ro = 100 nm (b), y = 1.28 Jm™2, solid lines — single crystal, dashed lines — polycrystalline

material with grain size d = 1 um or 0.1 um. Dy is diffusion coefficient of bulk, Dgg is grain
boundary diffusion coefficient.



Note S1.

The Ligament Size in Hypereutectic Au-Ge alloys.

The ligament size of eutectic structure depends on the undercooling reached during eutectic
solidification. The process limiting the solidification start is nucleation of a first eutectic two-
phase nucleus. In the case of hypoeutectic composition the slowest process is heterogeneous
nucleation of Ge crystal nuclei, since Au crystal grows as continuation of existent single gold
crystal.! In the case of hypereutectic composition (excess of Ge) the limiting rate process is
heterogeneous nucleation of Au crystals at liquid/solid Ge interface. As we know from previous
investigation, the first nucleated gold crystal, together with growing Ge crystals form the
eutectic structure consisting of one single gold crystal and rod-like Ge crystals. The growth rate
of this structure is about 10+-30 ums™,? and thus the undercooling reached after nucleation of
first nucleus is almost constant during solidification of micron-sized droplets.

Probability of heterogeneous Au nucleation per unit time ¢ is proportional to a surface of the
liquid/Ge interface S and therefore ¢ =kS , where k is the proportionality coefficient. For round

f2/3 where f is the volume fraction

shape of Ge solid particles, this surface S is proportional to
of the solid germanium phase:
_ ><Ge — Xél:

, 15
1- X 49

where X, is the total concentration of Ge in the alloy, XZ. is the eutectic concentration of Ge.

In order to evaluate the influence of total germanium concentration on the final ligament size
of eutectic structure, let us assume that the time needed for heterogeneous nucleation of a first
gold crystal is inversely proportional to the surface S (since At-¢ = At-kS =1):
At~S~1~f2/3 (2S)
Then, the undercooling AT , reached during cooling with the rate o, AT =aAt, is also
proportional to f*'®. According to theory of eutectic solidification of Turnbull,®* the ligament

size A is inversely proportional to the undercooling:

« AYapVinol

A=2)"=
ATAS,

(3S)

where vy, is the energy of the solid/solid (Au/Ge) interface, v, is the liquid molar volume,

mol

AS,, is the entropy change in the L (eutectic) — Au(s) + Ge(s) transformation. Using the

transformation entropy value for the Au-Ge system® AS; = 23.9 Jmol K™, y 4= (0.2+0.4)

Jm2and v, =10"°m°>one can find that the ligament size 70 nm corresponds to undercooling
5



AT, =(5+10)K, while the ligament size 220nm corresponds to AT, =(1.6+3.8)K . Using

Equations (1S)-(3S), one can write:

2/3
7\'_2_ AT]_ _ XGE,Z - Xglét (48)
7\'1 ATZ XGe,1 - Xé[(jet

For two investigated alloys, Xg,;=0.33+0.01and Xg,, =0.52+0.01. Using X¢&; =0.28
one can obtain A, /A, =2.4+3.4, which is reasnably close to the experimental ratio of

ligament sizes in these two alloys, ~3.1 (see table 1). The higher concentration of Ge

Xge3 =0.66+0.01 should result in the ratio A;/A;=3.9+4.6 with the ligament size

270+320 nm. However, the experimental values of ligament size for this sample vary
significantly throughout the droplet around 500 nm (Figure S1), the behavior which is beyond
the scope of this study.

Therefore, the presence of larger amount of solid germanium phase before eutectic
solidification results in smaller undercooling realizing during eutectic structure growth. That is
why the larger total (hypereutectic) Ge concentration results in the larger ligament size of the

eutectic structure.



Note S2.

The Rate of Sintering of Cylindrical Porous Material

Following to the approach of Mackenzie and Shuttleworth® it is assumed that deformation
during sintering is due to surface tension and that the porous material has homogeneous
mechanical properties defined by an equation of state connecting the rate of shear strain with
the shear stress. The material will also be assumed to be incompressible. In order to simplify
the calculations, we consider a special model (Figure S2) in which all the pores are isolated
equal cylindrical channels distributed at equal distance, |, from each other in the real solid
material.

Further approximation consists in replacing the material outside the cylindrical shell by the
equivalent homogeneous material, in which a channel of radius Ry is surrounded by a cylindrical
shell of the real incompressible material, out to some radius Rz, and then by homogeneous

continuum with the relative density, p:

p=1-R*/R}=1-0 (59)
where =R’/ R} is the porosity; the condition that the channel and its shell have the same

density as the array of channels is R, = NS
The problem is now reduced to the calculation of the rate of decrease in radius R of the channel,
surrounded by a shell of incompressible but shearable material, when a Laplacian pressure

—y / R, is applied inside the channel, y is the surface tension. Because the material is supposed

incompressible, the effect of surface tension in closing the pores is equivalent to the application

of an external pressure +y / R, to the surface of the compact.®

If the rate of cylindrical radial strain is &, the condition of incompressibility shows that the rate
of strain in the direction perpendicular to the cylinder axis is —¢ and zero in the direction parallel
to this axis. The rate of the channel closing is calculated by equating the energy dissipated by
the flow of the material in the shell to the work done by the surface tension:

dw, dw,
i dt (63)
The work done by the surface tension per unit time:
dw, d
dts = —E(ZTCRLY) =-2nlyu, (7S)

where u, =dR/ dt is the radial velocity of the channel surface. The rate of energy dissipation
per unit volume for the case of cylindrical symmetry can be found from the theory of' viscosity
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as given, for example, by Lamb,” E =4¢n, and the energy dissipated throughout the whole
volume of the shell:
dw,
dt

Ry Ry
=4[ &™n(&)dV =8l [ &™n(&)rdr (89)

Now, since the real material is incompressible, the radial velocity at any cylindrical radius is

inversely proportional to the radius. Thus, u, =u, -(R/ r)and &= du, =—Ug 52 Assuming a
r r

solid which has a Newtonian viscosity, n is independent of the rate of strain, from Equations
(6S)-(8S) one can obtain:

g, —-21 (9S)
2np

The volume of real material in the porous compact does not change. One can assume that also
the total number of channels does not change during initial stage of annealing.

Let us obtain a relation between the relative density and the time of sintering. The total area of

pores per unit area perpendicular to the channel axis is TR’n = (l—p) / p and therefore:

R=[(1-p)/ nnp]llz. Since u, =dR/ dt, from Equation (9S) one can obtain:

dp v 12
—=— 1- 10S
it = 2n L)) (105)

After integration the time of sintering is obtained as a function of final density p:

Y 12 T dp . i
t—t )= —— -2 — 11S
2T](nn) (t—t,) p{pl’z(l— (arcsm p —arcsin po) (115)

p)l/Z

The time t,, from which the sintering is measured, is determined by the initial density p,. In
the considered case of porous gold, p, ~0.7 and arcsin,/p, ~1.

The time of full sintering (p =1) can be estimated as

1/2
At =(t, —t, >=2—”(“—‘2) (129)
Y n

Using the usual expression for viscosity: n=I2KT / D, Q, where |, is the characteristic size of

microstructure, one can obtain Equation 2 presented in the main text of the paper.
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