# Visible-light Driven Si-Au Micromotors in Water and Organic Solvents

Dekai Zhou<sup>+<sup>ab</sup></sup>, Yuguang C. Li<sup>+<sup>b</sup></sup>, Pengtao Xu<sup>b</sup>, Liqiang Ren<sup>b</sup>, Guangyu Zhang<sup>a</sup>, Thomas E. Mallouk<sup>\*<sup>b</sup></sup>, Longqiu Li<sup>\*<sup>a</sup></sup>,

a. Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China

b. Departments of Chemistry, Biochemistry and Molecular Biology, and Physics, The Pennsylvania State University, University Park PA 16802

\*Corresponding Authors: tem5@psu.edu, longqiuli@hit.edu.cn

† These authors contributed equally to this work

## **Supporting Videos**

Video S-1: Si-Au micromotors moving in DI water without and with illumination, respectively, light intensity 13.6 mW/mm<sup>2</sup>.

Video S-2: Si-Au micromotors moving in DI water, ethanol, methanol, isopropanol, propylene carbonate, respectively, light intensity 13.6 mW/mm<sup>2</sup>.

Video S-3: Si-Au micromotors moving in DI water after illumination for 50 mins, after etching by 10% BOE solution, in the presence of 0.5 mM NaNO<sub>3</sub>, respectively, light intensity 13.6 mW/mm<sup>2</sup>.

Video S-4: Light triggered "on/off" control of Si-Au micromotors in DI water, light intensity 13.6 mW/mm<sup>2</sup>.

Video S-5: Magnetic control of Si-Au micromotors in DI water, light intensity 13.6 mW/mm<sup>2</sup>.

## **Supporting Figure**



Fig. S-1 X-ray diffraction pattern of a 500 nm thick Si film.



Fig. S-2 (a) Schematic illustration of the Ni-Si-Au micromotors. (b) Magnetic control of a Si-Au micromotor following a specific trajectory in DI water under mercury light illumination at 13.6 mW/mm<sup>2</sup>; the red arrow line represents the direction of the magnetic field.

## Experimental

## Sample preparation

Si-Au micromotors were synthesized by modification of a method reported previously. <sup>1-3</sup> First, 0.5 mL of 2  $\mu$ m polystyrene microspheres (Sigma-Aldrich Inc.) were washed in ethanol 3 times and dispersed by sonication. Then 2 mL of DI water was injected into a 5 mL petri dish and 20  $\mu$ L of hexane was dropped onto the water to form a thin film. After that, the polystyrene microsphere solution was dropped into the water from the edge of the petri dish until the spheres formed a monolayer and transferred to a Si wafer, then the water and hexane were dried in an oven at 40 °. 3  $\mu$ m of Si was evaporated on the polystyrene microspheres by a Kurt Lesker Lab 18 electron-beam evaporator at an 85° angle relative to the horizontal direction. After that, 30 nm of Au was evaporated onto the Si and then the micromotors were released in DI water with sonication.

### Materials characterization

The morphology and elemental composition of the Si particles and the Si-Au micromotors were characterized by FEI NanoSEM 630 scanning electron microscopy and energy dispersive X-ray spectroscopy. X-ray diffraction patterns of the 500 nm Si film on quartz substrate was recorded on a Philips Empyrean, Cu K $\alpha$  radiation. UV-vis diffuse-reflectance spectra of a 10 nm thick Si film on a quartz substrate was measured by using a Perkin-Elmer Lambda 950 spectrometer.

#### **Optical Imaging and Tracking**

The motion of the Si-Au micromotors was tracked by using video spot tracker V08.11 software. Motors were tracked for 30 s and mean square displacements (MSD) were calculated at different light intensities. All speeds were calculated by averaging the instantaneous speeds of 30 different micromotors. The motion of the Si-Au micromotors was observed with an Olympus BX60 M optical microscope and recorded with a video capture device (Dazzle Video Creator Plus). Videos of the Si-Au micromotors were captured at 30 frames per second. The motion videos of the Si-Au micromotors were analyzed by PhysMo software (PhysMo - Video Motion Analysis Package). All speeds were calculated by averaging the speeds of at least 10 different micromotors.

### **Gas Chromatographic Test**

In a GC experiment, 5 mg Si-Au micromotors were mixed in 5 mL of DI water and then the suspension was transferred to a 10 mL glass test tube that was air-tight. Argon was then injected into the void space of the test tube to purge out all air for 30 minutes. The test tube was irradiated with a 100 mW/cm<sup>2</sup> Xe lamp for 1 hour and then 500  $\mu$ L of the gas sample was extracted from the head space of the test tube with air lock syringe and injected into the GC. Hydrogen gas was detected with a thermal conductivity detector and argon carrier gas. Two additional control experiments were performed, the first one was in the absence of Si-Au micromotors and the other was in the absence of light illumination. While all the other experimental parameters were the same.

### References

- J. G. Gibbs and Y. Zhao, *Small*, 2010, 6, 1656.
  H. K. Raut, V. A. Ganesh, A. S. Nair and S. Ramakrishna, *Energ. Environ. Sci.*, 2011, 4, 3779-3804.
  C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, M. Horprathum, A. Tuantranont and T. Kerdcharoen, *Sens. Actuators B*, 2013, 181, 388-394.