Supporting Information

Dual active nitrogen doped hierarchical porous hollow carbon nanospheres as oxygen reduction electrocatalyst for zinc-air batteries

Jiawei Zhu^a, Huang Zhou^a, Chengtian Zhang^a, Jian Zhang^{a,b*} and Shichun Mu^{a*}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing,

Wuhan University of Technology, Wuhan 430070, China

^bState Key Laboratory of Material Processing and Die & Mould Technology, School of

Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan

430074, PR China

Fax: +86 27 87879468.

E-mail: msc@whut.edu.cn, zhangjian7@hust.edu.cn.

Equation S1

The rotating ring-disk electrode (RRDE) measurements for the catalyst were also performed with a three-electrode system in O₂-saturated 0.1 M KOH solution at a rotation rate of 1600 rpm with a scan rate of 10 mV s⁻¹, and the potential of the Pt ring was set at V = 1.5 V. The apparent electrons transferred numbers were calculated based on the following equation:

$$n=4J_{D}/(J_{D}+J_{R}/N)$$
(1)

where J_D and J_R represent the disk and ring currents, respectively. And N is the current collection efficiency of the Pt ring, which was 0.37 in our system.

Figure S1 (a, b) SEM images for N-BC.

Figure S3 (a) Raman spectrum for N-BC; (b) peak intensity ratios of the D band to the G $\,$

band (I_D/I_G) for N-HCNs and N-BC.

Figure S4 XPS survey spectrum of the N-HCNs.

Figure S5 XPS survey spectra of the (a) N-BC and (c) N-MPC; curve-fitted N1s spectra for (b) N-BC and (d) N-MPC.

Figure S6 LSV curves for samples pyrolyzed at different temperatures.

Figure S7 XPS survey spectra for (a) N-HCNs (800) and (b) N-HCNs (1000); curve-fitted N1s spectra for (c) N-HCNs (800) and (d) N-HCNs (1000).

Figure S8 LSV curves at 1600 rpm before and after i-t chronoamperometric responses for (a)

N-HCNs and (b) Pt/C.

Figure S9 (a) LSV curves for N-HCNs and Pt/C catalysts at 1600 rpm in 0.1 M HClO₄ solutions; (b) the i-t chronoamperometric responses for N-HCNs and Pt/C in acidic media.

Figure S10 (a) LSV curves and (b) Koutecky-Levich (K-L) plots for N-HCNs at various rotating rates from 400 to 2000 rpm in acidic media ($n \approx 4.23$); (c) RRDE polarization curves

at 1600 rpm for the N-HCNs catalyst in 0.1 M HClO₄; (d) the calculation results of the

electron transfer number.

Figure S11 Open circuit voltage vs. time curves of the zinc–air battery with N-HCNs and

Pt/C air electrode.

Point	C/at.%	N/at.%	O/at.%
1	90.33	3.60	6.07
2	92.72	4.12	3.16
3	87.32	5.09	7.60
average	90.12	4.27	5.61

Table S1 Energy dispersive spectrometer analysis of N-HCNs.

Table S2 Comparisons of ORR performance for N-HCNs with other reported N-dopedcarbon and M-Nx/C catalysts in 0.1 M KOH electrolytes.

E ₀ /V	E _{1/2} /V	Ref.
0.931	0.845	This work
0.9346	0.8346	1
-	0.8153	2
0.8853	-	3
0.911	0.799	4
0.923	0.809	5
0.95	0.84	6
0.98	0.78	7
0.965	0.826	8
0.98	0.81	9
0.91	-	10
1.01	0.86	11
0.97	0.82	12
1.04	0.88	13
0.970	0.869	14
0.98	0.84	15
0.94	0.83	16
0.95	0.83	17
0.98	0.85	18
1.01	0.88	19
0.83	0.72	20
	E ₀ /V 0.931 0.9346 - 0.8853 0.911 0.923 0.95 0.98 0.965 0.98 0.965 0.98 0.91 1.01 0.97 1.04 0.970 0.98 0.970 0.98 0.94 0.95 0.98 1.01 0.83	E_0/V $E_{1/2}/V$ 0.9310.8450.93460.8346-0.81530.8853-0.9110.7990.9230.8090.950.840.980.780.9650.8260.980.810.91-1.010.860.970.821.040.880.9700.8690.980.840.940.830.950.830.950.830.980.851.010.880.930.72

References

- 1. H. Zhou, J. Zhang, J. Zhu, Z. Liu, C. Zhang and S. Mu, Rsc. Adv, 2016, 6, 73292-73300.
- Z. Chen, D. Higgins, H. Tao, R. S. Hsu and Z. Chen, J. Phys. Chem. C, 2014, 113, 21008-21013.
- 3. G. Ma, R. Jia, J. Zhao, Z. Wang, C. Song, S. Jia and Z. Zhu, *J. Phys. Chem. C*, 2015, **115**, 25148–25154.
- 4. K. Hu, L. Tao, D. Liu, J. Huo and S. Wang, ACS Appl. Mater. Inter., 2016, 8, 19379–19385.
- 5. L. Lin, Q. Zhu and A. W. Xu, J. Am. Chem. Soc., 2014, 136, 11027-11033.
- 6. X. H. Yan and B. Q. Xu, J. Mater. Chem. A, 2014, 2, 8617-8622.
- 7. J. Li, G. Shraboni, W. Liang, M. T. Sougrati, F. Jaouen, H. Barr, M. K. Samuel, M. C. Geoff, C. Ma and X. Yuan, *Energ Environ. Sci.*, 2016, **9**, 2418-2432.
- 8. X. Cui, S. Yang, X. Yan, J. Leng, S. Shuang, P. M. Ajayan and Z. Zhang, *Adv. Funct. Mater.*, 2016, **26**, 5708-5717.
- H. Jiang, Y. Yao, Y. Zhu, Y. Liu, Y. Su, X. Yang and C. Li, ACS Appl. Mater. Inter., 2015, 7, 21511-21520.
- 10. Q. Cui, S. Chao, P. Wang, Z. Bai, H. Yan, K. Wang and L. Yang, *Rsc. Adv*, 2014, 4, 12168-12174.
- 11. A. Kong, X. Zhu, Z. Han, Y. Yu, Y. Zhang, B. Dong and Y. Shan, *ACS Catal.*, 2014, 4, 1793-1800.
- J. Sanetuntikul, C. Chuaicham, Y.-W. Choi and S. Shanmugam, J. Mater. Chem. A, 2015, 3, 15473-15481.
- 13. T. Liu, P. Zhao, X. Hua, W. Luo, S. Chen and G. Cheng, J. Mater. Chem. A, 2016, 4, 11357-11364.
- 14. Y. Zhang, L. B. Huang, W. J. Jiang, X. Zhang, Y. Y. Chen, Z. Wei, L. J. Wan and J. S. Hu, *J. Mater. Chem. A*, 2016, **4**, 7781-7787.
- 15. C. Domínguez, F. J. Pérezalonso, M. A. Salam, S. A. Althabaiti, M. A. Peña, L. Barrio and S. Rojas, *J. Mater. Chem. A*, 2015, **3**, 24487-24494.
- 16. G. A. Ferrero, K. Preuss, A. Marinovic, A. B. Jorge, N. Mansor, D. J. Brett, A. B. Fuertes, M. Sevilla and M. M. Titirici, ACS Nano, 2016, 10, 5922-5932.
- 17. J. Wei, Y. Liang, X. Zhang, G. P. Simon, D. Zhao, J. Zhang, S. Jiang and H. Wang, *Nanoscale*, 2015, **7**, 6247-6254.
- 18. Y. Wang, A. Kong, X. Chen, Q. Lin and P. Feng, ACS Catal., 2015, 5, 3887–3893.
- 19. S. Wang, M. Zhu, X. Bao, J. Wang, C. Chen, H. Li and Y. Wang, *Chemcatchem*, 2015, 7, 2937–2944.

20. L. Osmieri, R. Escudero-Cid, A. H. A. M. Videla, P. Ocón and S. Specchia, *Appl. Catal. B-Environ.*, 2017, **201**, 253-265.