
Fullerenol Nanoparticles Suppress RANKL-Induced

Osteoclastogenesis by Inhibiting Differentiation and Maturation

Huan Geng^{a,b}, Ya-Nan Chang^b, Xue Bai^{b,c}, Shuitao Liu^a, Qing Yuan^{b,c}, Weihong Gu^{b,c}, Juan Li^b, Kui Chen^b, Gengyan Xing^{a*} and Gengmei Xing^{b*}

a. Department of Orthopedics, General Hospital of Chinese People's Armed Police Forces, Beijing 100039, China.

- b. CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety,_Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China.
- c. University of Chinese Academy of Sciences, Beijing 100049, China.
- * Corresponding authors: <u>xinggm@ihep.ac.cn</u>

Fig. S1 Fullerenol reduces the migration of pre-osteoclasts . (A) Pre-osteoclasts were grown on 48-well plates, after scratching, the cells were treated with 30 ng/mL M-CSF and 50 ng/mL RANKL, and fullerenol (0, 1, 10, and 50 μ M), the transferred cells were counted. (B) Fullerenol inhibits the migration of pre-osteoclasts. Error bars are mean±SD of triplicate experiments, ***p < 0.001, significant difference as compared to 0 μ M fullerenol groups.