Supporting Information

Ultrafast-temporal-responsive flexible photodetector with high sensitivity based on high-crystallinity 2D organic-inorganic perovskite

*Wei Zheng, Richeng Lin, Zhaojun Zhang, Qixian Liao, Jiajun Liu and Feng Huang** *Corresponding author: <u>huangfeng@mail.sysu.edu.cn</u>

Derivation

Derivation of the relationship between responsivity (R_{λ}) and surface-recombination-velocity (s) is conducted. At first, the equation of responsivity and optical gain is cited from a previous report:¹

$$R_{\lambda} = \frac{\eta(\lambda)G(\lambda)}{1} \frac{e\lambda}{hc}, \qquad (1)$$

where λ is excited light wavelength, $\eta(\lambda)$ is efficiency of light absorption, $G(\lambda)$ is optical gain, *e* is electronic charge, *h* is planck constant, and *c* is velocity of light. The optical gain can be written as:²

$$G(\lambda) = \frac{\tau_{eff}}{\tau_t},$$
 (2)

where τ_{eff} is effective lifetime of carriers, and τ_t is transit time, expressed as: $1/\tau_t = \mu V/L^2$.

For 2D structure, the τ_{eff} can be expressed as:³

$$\frac{1}{\tau_{eff}} = \frac{1}{\tau_b} + \frac{2s}{L},\tag{3}$$

where τ_b is bulk carrier lifetime, and *L* is length of the material. Substituting Equations (2) and (3) into (1), the responsivity can be written as:

$$R_{\lambda} = \frac{1}{\frac{1}{\mu \tau_{b}} + \frac{2s}{\mu L}} \cdot \frac{e \eta \lambda V}{h c L^{2}}, \qquad (4)$$

Figure S1. Optical images of 2D MAPbI₃ and PbI₂ precursors on ITO, SiO_2/Si and sapphire substrates, indicating low restriction of the substrates.

Figure S2. XRD patterns of 2D MAPbI₃ (red line) and PbI₂ precursor (black line). The differences of the XRD spectra between 2D layered PbI₂ precursor and MAPbI₃ indicate that hexagonal layered PbI₂ precursor has transformed to tetragonal MAPbI₃structure.

Figure S3. XPS of as-grown 2D MAPbI₃. The characteristic peaks of Pb 4*f*, C 1*s*, N 1*s* and I 3*d* are pointed out, which are discussed in the manuscript.

Figure S4. (a) and (b) show AFM images of the 2D layered PbI_2 precursor and corresponding 2D MAPbI₃ crystal after gas reaction, respectively. (c) Thicknesses of the samples shown in (a) and (b) exhibit obvious variation.

Figure S5. A typical schematic diagram of the electric measurement system, including two tips contacting Au electrodes, a sourcemeter to measure I-V curve and a source to modulate the 265 nm LED light.

Figure S6. (a) Dark current of the present detector. The inset is corresponding optical photo. (b) Photocurrent as a function of illumination intensity shows a linear increase with increasing illumination intensity, demonstrating a typical photoconductive effect.

Figure S7. I-V characteristic of bulk MAPbI₃ single crystal with a size of 2mm(length)×2mm(width)

×0.5mm(thickness) synthesized via typical inverse temperature crystallization. The I-V characteristic analyzed by space charge limit current effect shows an ohmic region, a trap-filled region and a Child region. The carrier mobility of MAPbI₃ can be fitted via the equation: $I=9\varepsilon\varepsilon_0\mu V^2/8L$, where ε is dielectric constant of the material, ε_0 is vacuum dielectric constant, L is length of the material, and the extracted $\mu=21.7$ cm²V⁻¹s⁻¹.

References

- Saran, R. & Curry, R. J. Lead sulphide nanocrystal photodetector technologies. *Nat. Photon.* 10, 81-92 (2016).
- Neamen, D. A. Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, Beijing (2003).
- Demichel, O. *et al.* Surface Recombination Velocity Measurements of Efficiently Passivated Gold-Catalyzed Silicon Nanowires by a New Optical Method. *Nano Lett.* 10, 2323-2329 (2010).