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Models of periodic gyroid graphene  

All atomistic simulations and modeling are performed on the Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) package
1
. We utilize the graphene gyroid models proposed in a previous 

study
2
, where the gyroid shape of graphene is made based on several steps. Here, we briefly introduce the 

method: Firstly, we obtain triangular flakes from Lennard-Jones particles with an external potential that 

allows the particles to form gyroid geometries. Secondly, particles are deleted to form hexagonal flakes 

based on the bond numbers. Finally, the geometries are refined with interatomic interactions based on the 

Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) Potential
3, 4

 together with the 

external potential. Boundary atoms of flakes are added or deleted based on the bond number with a 

modified switching function cutoff of 2.0Å. This cutoff is important for natural behaviors of bond 

breaking and forming with the REBO potential
5, 6

. The generated models are shown in Figure 1. The x-, 

y-, and z-coordinates of the atoms are generated according to the equation  
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where L is a parameter for the lattice constant of a unit cell. In this study, we test the thermal 

conductivities of five different atomistic models with different sizes (L: from 3 to 20nm). It is important 

to note that the curvature of the shape is induced by pentagon and heptagon defects (the disorder ratio, β, 

is shown in Table S1). Unlike 2D polycrystalline graphene, the pentagon-heptagon rings induce 

dislocations and thus, various curvatures.  

For the thermal properties, the selection of interatomic potentials is critical for the reliable behaviors of 

systems. Although AIREBO is proper to build the models by processes including bond forming and 

breakings, Tersoff potential has been widely used in thermal MD studies for carbon-based materials such 

as graphene, carbon nanotube, and their complex 3D composite structures
7-9

. In this study, we utilize the 

optimized parameters for better agreement with experimental data
10

, as these parameters show improved 

fits to graphene’s in-plane phonon-dispersion curves (See Figure S3). 
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Thermal conductivity 

There are two common ways to predict thermal conductivities from MD simulations: equilibrium (Green-

Kubo relation) and non-equilibrium MD methods. Both methods have been extensively utilized for 

determining thermal conductivities of graphene
11, 12

 and porous materials
13

. From kinetic theory, thermal 

conductivity can be expressed as
14

 

,     (S2) 

where c(ω), v, l(ω), and τ(ω) are the phonon-specific heat, group velocity, MFP, and relaxation time, 

respectively.  

Non-equilibrium molecular dynamics (NEMD) 

We relax the systems in the NPT ensemble together with the Langevin thermostat and Berendsen barostat 

at a low temperature of 10K for the cell parameters. Next, the Nosé-Hoover thermostat is applied to 

equilibrate the system at 300K for 5ps with a time step of 0.5 fs. Thereafter, the heat flux is imposed in 

the NVE ensemble for 0.5ns or 1.0ns with 0.25fs (0.5fs for L=15nm and 20nm) time step for the steady 

state. The short time step is required for conserving the system’s total energy while performing ensemble 

averaging, and the longer relaxation time is required for the longer system to attain a linear temperature 

gradient. Subsequently, averaged temperature gradients are obtained for 0.5ns. Since a small cross 

sectional area and heat flux result in large standard deviations of temperature, we set up the system with 

replicated units for all simulations and scale the heat flux based on the length of the simulation box, 

which gives a net temperature drop of approximately 10K. Detailed information including lateral 

dimension, thickness, heat flux and the length is shown in Figure S4. The temperature gradient is obtained 

by linear regression of the temperature profile of the system at steady state as shown in Figure S5. All 

temperature gradients of models are shown in Figure S6-10. The thermal conductivity is simply obtained 

from Fourier’s Law:  

 ,       (S3) 

where j and  are the heat flux and the temperature gradient respectively.  

Equilibrium molecular dynamics (EMD) with Green-Kubo relation 

Thermal conductivity in the direction i is given by
15, 16

 

,      (S4) 

where kB, t, V, Ji  and  are the Boltzmann constant, time, volume, heat current vector in the i 

direction and the heat current autocorrelation function (HCACF). The detailed expression of the heat 

current vector is expressed as
12
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where ei, vi, fij and xij are the energy, velocity of atom i, forces and distance between atom i and j, 

respectively. All models are relaxed in the NPT ensemble with the Langevin thermostat and Berendsen 
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barostat from10K and 300K. Next, sequential NPT, NVT, and NVE ensembles are applied at 300K for 

10
6
 steps each. Finally, the data of heat flux vectors are accumulated for 10

7
 steps with the NVE ensemble. 

The typical HCACF data and thermal conductivity for graphene as a function of time are shown Figure 

S11. The HCACF and thermal conductivities of gyroid models are shown in Figure S12.  

Acoustic mode relaxtion time 

The thermal conductivity of a monatomic crystal can be decomposed into contributions from a fast optical 

mode and a slow acoustic mode as
17
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Since the contribution of the fast optical modes for the thermal conductivity is usually negligible, it can be 

simplified as . 

Phonon density of state (PDOS) 

The vibrational density of state (vDOS) can be determined from the Fourier transform of the velocity 

autocorrelation function (VACF) as
18

  

 

 

 .     (S7) 

The phonon density of states (PDOS) is calculated from PDOS = . We note that the noise of 

PDOS depends on the number of atoms in systems and sampling time. Here, we use more than 20,000 

atoms by repeating the unit cell if it is necessary for all samples, and 5ps sampling with 0.25fs time step. 

From the PDOS (D(ω)), the specific heat can be obtained by,  

 

.    (S8) 

In the integral, the contribution of PDOS is proportional to . In the current 

study at 300K, the contribution of 50THz is only 2.5% of that of 10THz.  
 

Normalization and dissipation factor of atomic heat flux 

We average 400 points during 500ps of steady states of NEMD. From the summation of the vector in the 

heat flux direction and the system length, the net flux per unit length is obtained as  

, (12) 

where Jiy and ly are the component of the heat flux vector and the system length in the heat flux direction 

(the y direction), respectively. The normalized spatial distribution of the atomic heat flux can be obtained 

by  

 .       (S9) 

This normalization allows all different systems to have the same net heat flux per unit system length in 

the direction of heat flux. Next, we define the dissipation factor (D) by 
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 .       (S10) 

Respectively, N and Jnet are the number of atoms and the norm of the net flux of the system from Jnor. This 

dissipation factor represents the localized heat flux that does not contribute to the net flux in NEMD. For 

visualization of atomic heat flux vectors, we utilize the normalized components as 

.     (S11) 

 

We utilize AtomEye
19

 and VMD
20

 for visualization.  

 

 

Figure S1. a-f. The spatial distribution of defects in the gyroid models: L= 3, 5, 10, 15 and 20nm. Red 

atoms indicate the atoms belong to non-hexagonal ring defects. The scale bar represents 1nm for each 

model.  
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Figure S2. Phonon density of states of gyroid graphene and graphene (Separated images) 
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Figure S3. Phonon dispersion curves of graphene (10nm x 10nm) obtained from lattice dynamics with 

the optimized Tersoff potential
21

.  

 

 

Figure S4. (a) An example of the NEMD setup with a gyroid model (L=10nm) for l = 60nm, w=20nm, 

and t=10nm. (b) The table of the detailed NEMD configurations for all models. The heat flux energy, j, is 

selected based on the temperature gradient. Also, the cross-sectional areas (wt) are selected based on the 

standard deviation of temperatures of the temperature gradient.  
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Figure S5. Typical temperature distribution of gyroid graphene with L=20nm and l=100nm)  

 

 

Figure S6. Temperature distribution of gyroid graphene with L=3nm with various lengths.  



8 
 

 

Figure S7. Temperature distribution of gyroid graphene with L=5nm with various lengths.  

 

Figure S8. Temperature distribution of gyroid graphene with L=10nm with various lengths.  
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Figure S9. Temperature distribution of gyroid graphene with L=15nm with various lengths.  

 

Figure S10. Temperature distribution of gyroid graphene with L=20nm with various lengths.  
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Figure S11. The HCACF (a) and thermal conductivity (b) and from EMD (Green-Kubo) of graphene 

(10nm x 10nm). 

 

Figure S12. The thermal conductivity (a) and HCACF (b) from EMD (Green-Kubo) of gyroid graphene.    
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Figure S13. Atomic heat flux vectors of graphene: homogeneous distribution and clear directionality in 

the heat flux direction (in the y direction) 

 

 

Figure S14. Atomic heat flux vectors of gyroid model (L=3nm), NEMD applied in the y direction: non-

homogeneous and complicated directionality. The red atoms indicate defects. The vectors of hexagonal 

atoms show large variation as those of detect atoms.  
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Figure S15. Atomic heat flux vectors of gyroid model (L=10nm), NEMD applied in the y direction: The 

red atoms indicate defects. The vectors of hexagonal atoms show slightly less deviation than those of 3nm 

model. The directionality is still unclear.  

 

Figure S16. Atomic heat flux vectors of gyroid model (L=20nm), NEMD applied in the y direction: The 

red atoms indicate defects. The vectors of hexagonal atoms show much less deviation than those of 



13 
 

hexagonal atoms, clearly showing the difference between defects and hexagonal atoms. The directionality 

is still unclear because the vector basically follows the lattice directions.  

 

Table S1. Defect types and disorder ratios of three-dimensional gyroid graphene models.   

L (nm) 5 rings 6 rings 7 rings 8 rings Disorder ratio 

by #type (%) 

Disorder ratio (β)  

by #atom (%) 

3 17 439 64 0 15.58 41.0 

5 30 1002 70 0 9.07 18.8 

10 147 5635 192 1 5.69 13.0 

15 279 12896 321 3 4.47 10.0 

20 473 23086 413 4 3.71 9.0 

 

Table S2. Fitted parameter data for thermal conductivity (exponential fit), l(x) = l0(1- exp(-x / l0 )), 

and inversed thermal conductivities (inverse linear fit), 
1
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, as a function of the 

length and inversed length from NEMD. 

L (nm) λ0 (W/mK) l0 (nm) A  Λ0 (W/mk) 

3 4.45 58.9 9.66 4.94 

5 4.15 84.0 8.46 4.50 

10 3.74 88.15 15.82 4.19 

15 3.75 157.7 26.66 4.14 

20 3.57 200.5 36.52 4.1 

 

Table S3. Fitted parameter data for thermal conductivity (exponential fit), l(x) = l0(1- exp(-x /t 0 ))  

as a function of correlation time (ps) from EMD (zz: zigzag direction, ac: armchair direction). The 

parameter, τ0, is a relaxation time of the fast acoustic modes. The size effects are tested with doubled size 

L (nm) λ0 (W/mK)  τ0 (ps) Doubled size 

λ0 (W/mK)  

3 3.62 ± 0.14 0.02 3.52 ± 0.03 

5 3.25 ± 0.12 0.07 3.07 ± 0.15 
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10 3.07 ± 0.25 0.17 3.00 ± 0.07 

15 2.97 ± 0.11 0.29 2.91 ± 0.09 

20 2.91 ± 0.32 0.37 2.69 ± 0.15 

Reference (graphene) 1218 (zz), 1121(ac) 8.78 - 

 

Table S4. The effects of width and thickness. We have tested doubled width or thickness with the longest 

sample in the y direction (l). The results show the thermal conductivities from the Fourier law. Increasing 

the width or thickness from the current setting does not affect thermal conductivities.  

L (nm) λ (t, w, l) λtested (t, w, l) 

3 4.71 ± 0.47  (9,9,60) 5.08 ± 0.39  (18,9,60) 

5 4.64 ± 0.44  (10,10,60) 4.32 ± 0.31  (20,10,60) 

10 4.03 ± 0.38  (20,10,60) 3.73 ± 0.17  (20,20,60) 

15 3.99 ± 0.4 (15,15,90) 4.07 ± 0.48 (30,15,90) 

20 3.7 ± 0.46 (20,20,100) 3.2 ± 0.2 (40,20,100) 

 

Table S5. Temperature dependency obtained from EMD with doubled sizes due to their small standard 

deviations. Fitted data for thermal conductivity (exponential fit), l(x) = l0(1- exp(-x /t 0 ))  as a 

function of correlation time (ps) from EMD. The dependency parameter, α, is fitted to λ~Τ
-α

 in the range 

between 200K to 400K.  

L (nm) λ0 (W/mK) 

@200Κ 

λ0 (W/mK) 

@300Κ 

λ0 (W/mK) 

@400Κ 

α 

3 3.65 ± 0.14 3.52 ± 0.03 3.49 ± 0.07 0.005 

10 3.19 ± 0.04 3.00 ± 0.07 2.98 ± 0.04 0.008 

20 2.77+0.1 2.69 ± 0.15 2.64 ± 0.02 0.06 
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