Hollow Co₂P nanoflowers organized by nanorods for ultralong cycle-life supercapacitors

Ming Cheng^{a,b}, Hongsheng Fan^{a,b}, Yingying Xu^c, Rongming Wang^{c,*}, Xixiang Zhang^{b,*}

- ^a Department of Physics, Beihang University, Beijing 100191, P. R. China
- ^b King Abdullah University of Science and Technology (KAUST), Physical Science

and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia

^c Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface

Science, School of Mathematics and Physics, University of Science and Technology

Beijing, Beijing 100083, P. R. China

* Corresponding authors: rmwang@ustb.edu.cn, xixiang.zhang@kaust.edu.sa

The theoretical capacity value of Co₂P and Ni₂P

The formula used to calculated theoretical capacity: $C=n\times F/(V\times M)$, where n is the moles of charge transferred per mole of active material, F is Faraday's constant (96485.3383 C mol⁻¹), M is the molar mass of the active material, and V is the potential range.¹ For comparison, V is supposed to be 0.5 V for both sample here.

For Co₂P, C₁=(4- δ_1)x2601 F g⁻¹, (0< δ_1 <1);^{2, 3}

For Ni₂P, C₁=(3- δ_2)x2601 F g⁻¹, (0< δ_2 <1);^{2, 3}

So cobalt phosphides should have a higher theoretical capacity than nickel phosphides.

The details of the calculation methods

The electronic band structure of Co₂P is evaluated by the density functional theory calculations performed using CASTEP.⁴ The OTFG ultrasoft pseudo-potentials and generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional are adopted. Plane-wave basis sets with the energy cutoff of 600 eV are used to expand the electronic wave-functions. The residual energy are less than 10⁻⁶ eV for each atom. A Γ center (9×13×7) Monkhorst-Pack grid of k points is used for the DOS calculations. Co₂P have the C₂₃ orthorhombic structure with the space group D_{2h}^{16} (Pnma). The lattice constants and atomic positional parameters of Co₂P are shown in below.³

	a (nm)	b (nm)	c (nm)		x	у	Z
Co ₂ P	0.5646	0.3513	0.6608	Coı	0.8560	0.2500	0.0647
				Co _{II}	0.9685	0.2500	0.6657
				Р	0.2461	0.2500	0.1249

Fig. S1 Total densities of states and partial densities of states curves of Co₂P.

Fig. S2 High resolution XPS spectra of C 1s for Co_2P HNF.

Fig. S3 CV curve of Co_2P HNF at a scan rate of 5 mV·s⁻¹.

Electrocatalytic Activity toward OER

OER activity was evaluated in a standard three-electrode cell with platinum foil as the counter electrode and Ag/AgCl (KCl saturated) as the reference electrode. To prepare the working electrode, 7.0 mg of Co₂P catalyst was dispersed in 2 mL of solution (1 mL of Dl water, 0.88 mL of isopropanol and 0.12 mL of 5 wt.% Nafion solution) by ultrasonication. Then, 11 µL of the catalyst suspension was carefully pipetted onto the glass carbon (GC) electrode surface with a diameter of 5 mm. The coated electrode was dried in air. The catalyst loading amount is 0.2 mg cm⁻² on the GC electrode. Potentials were referenced to a reversible hydrogen electrode (RHE): E(RHE) = E(Ag/AgCl) + (0.1976 + 0.059 pH). Linear sweep voltammetry (LSV) was recorded in O²-saturated 1.0 M KOH (pH = 13.62) at a scan rate of 5 mV s⁻¹ to obtain the polarization curves. The long-term stability tests were performed by continuous LSV scans at a sweep rate of 100 mV s⁻¹. The polarization curves were all corrected by 95% iR compensation. Cyclic voltammetry curves were conducted from 0.80 to 0.88 V (vs. RHE) without faradaic processes at different scan rates (5 to 12.5 mV/s). The I-t curve was measured under a fixed overpotential of 0.37 V.

Fig. S4 Electrochemical performance of the OER catalysts in 1 M KOH: (a) The polarization curves of Co_2P HNF. (b) Tafel curves of Co_2P HNF. (c) Scan rate

dependence of the average apacitive currents at 0.85 V vs. RHE of Co_2P HNF. Inset is the cyclic voltammogram curves in a potential window without faradaic processes. (d) The stability of Co_2P HNF modified electrode before and after LSV testing for 500 and 1000 cycles, respectively. Inset is the current-time plot of Co_2P HNF electrode with a constant applied potential of 1.60 V vs. RHE.

The OER activities of Co_2P HNF were evaluated in a high pure O_2 -saturated 1.0 M KOH solution using a standard three electrodes setup. As shown in Fig. S4a, Co₂P HNF affords a current density of 10 mA cm⁻² at 1.590 V (vs. RHE). The Tafel slope of Co₂P HNF, which is usually used to evaluate the efficiency of the catalytic reaction,⁵ is also determined to be 59 mV dec⁻¹ (Fig. S4b). Furthermore, the electrochemically active surface area of Co₂P HNF can be estimated from the electrochemical doublelayer capacitances of the catalytic surface by measuring the CV curves in the potential range of 0.80 – 0.88 V (vs. RHE) without redox process (Fig. S4c).⁶ The capacitance of Co₂P HNF is measured to be 0.20 mF cm⁻². To assess the durability of Co₂P HNF electrocatalyst, continuous linear potential sweeps were conducted repeatedly on the electrode. Co₂P HNF exhibits inherent stability after 500 continuous cycles, and only a little anodic current loss is observed after 1000 cycles (Fig. S4d). The stability of the Co₂P HNF is further tested by using a chronoamperometric method at 1.60 V (vs. RHE), as shown in Fig. S4d. The OER activity retains 67% after 1 h, which could be ameliorated by improving adhesion of the powder to the electrode.⁷ The OER activity of Co₂P HNF is also compared with the previoursly previously transition metal compounds (Table S1). Though our perpared Co₂P HNF is not as good as the reported transition metal phosphide, it outperforms many reported transition metal oxides or hydroxides.

Electrocatalysts	Morphology	Electrolyte	Loading (mg cm ⁻²)	ካ @10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Ref.
Co₂P HNF	b t 20 m	1.0 M KOH	0.2	360	59	This work

Sandwich-like CoP/C nanocomposite s	Done and the second	1.0 М КОН	0.36	330	53	8
Co₂P/CNT	(a) <u>160 am</u> <u>400 am</u>	1.0 М КОН	0.75	292	68	9
Cu _{0.3} Co _{2.7} P/NC	d 200 m	1.0 М КОН	0.4	190	44	10
CoP NR/C	e	1.0 М КОН	0.71	320	71	11
CoP nanoparticles	(c) 39 m	0.1 М КОН	0.4	360	66	12
CoP nanorod arrays on Ni foam	(b) 10 <u>10</u>	1.0 М КОН	6.2	290	65	13
Co-P film	(a) 00-P film <u>ε μm</u>	1.0 M KOH	1.0	345	47	14
CoP/CNT	a 300 nm	0.1 M NaOH	0.285	400	80	15
Carbon coated Ni-P	d 10 nm	1.0 М КОН	0.20	300	64	16
FeP@CNT	b <u>Jun</u>	1.0 М КОН	0.204	300	53	17

Au@Ni12P5		1.0 М КОН	0.13	340	49	7
Ni ₁₂ P ₅	50 nm	1.0 М КОН	0.13	380	43	
Hollow fluffy Co(OH)2	100 nm	РН 14 КОН	0.14	422	93	18
Hollow fluffy Co ₃ O ₄	100 m	РН 14 КОН	0.14	409	70	
Co3O4/N-PC	d Zam	0.1 М КОН	0.354	390	72	19
NiCo LDH	BIHCFR 2 um	1.0 M KOH	0.17	370	40	20
Hollow CoO		1.0 М КОН	0.20	375	55	21
PGE-CoO	(C) 50 nm	0.1 М КОН	0.524	348	79	6
Porous FeNi Oxides nanosheets		1.0 М КОН	0.254	213	32	22
Co ₃ O ₄ /NiCo ₂ O ₄ DSNCs		1.0 M KOH	1.0	340	88	5

Fig. S5 (a) CV curves at different scan rates and (b) CP curves at different current densities of the active carbon (AC).

References

- 1. C. Zhou, Y. Zhang, Y. Li and J. Liu, *Nano Lett.*, 2013, **13**, 2078.
- H. Liang, C. Xia, Q. Jiang, A. N. Gandi, U. Schwingenschlögl and H. N. Alshareef, *Nano Energy*, 2017, 35, 331.
- 3. S. Fujii, S. Ishida and S. Asano, J. Physics F Metal Physics, 1988, **18**, 971.
- 4. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson and M. C. Payne, Zeitschrift Fur Kristallographie, 2005, **220**, 567.
- 5. H. Hu, B. Guan, B. Xia and X. W. Lou, J. Am. Chem. Soc., 2015, **137**, 5590.
- 6. Y. Zhao, B. Sun, X. Huang, H. Liu, D. Su, K. Sun and G. Wang, J. Mater. Chem. A, 2015, 3, 5402.
- Y. Xu, S. Duan, H. Li, M. Yang, S. Wang, X. Wang and R. Wang, *Nano Res.*, 2017, DOI:10.1007/s12274-017-1527-1.
- 8. Y. Bai, H. Zhang, Y. Feng, L. Fang and Y. Wang, J. Mater. Chem. A, 2016, 4, 9072.
- 9. D. Das and K. K. Nanda, *Nano Energy*, 2016, **30**, 303.
- 10. J. Song, C. Zhu, B. Z. Xu, S. Fu, M. H. Engelhard, R. Ye, D. Du, S. P. Beckman and Y. Lin, *Adv. Energy Mate.*, 2017, **7**, 1601555.
- 11. J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu and W. Xing, ACS Catal., 2015, 5, 6874.
- 12. J. Ryu, N. Jung, J. H. Jang, H.-J. Kim and S. J. Yoo, ACS Catal., 2015, 5, 4066.
- 13. Y.-P. Zhu, Y.-P. Liu, T.-Z. Ren and Z.-Y. Yuan, *Adv. Funct. Mater.*, 2015, **25**, 7337.
- 14. N. Jiang, B. You, M. Sheng and Y. Sun, *Angew. Chem. Int. Edit.* 2015, **54**, 6251.
- 15. C. C. Hou, S. Cao, W. F. Fu and Y. Chen, ACS Appl. Mater. Inter., 2015, 7, 28412.
- 16. X. Yu, Y. Feng, B. Guan, X. W. D. Lou and U. Paik, *Energy Environ. Sci.*, 2016, **9**, 1246.
- 17. Y. Yan, B. Zhao, S. C. Yi and X. Wang, J. Mater. Chem. A, 2016, 4, 13005.
- X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li, Y. Ma and Y. Qu, ACS Appl. Mater. Inter., 2015, 7, 20322.
- 19. Y. Hou, J. Li, Z. Wen, S. Cui, C. Yuan and J. Chen, *Nano Energy*, 2015, **12**, 1.
- 20. H. Liang, F. Meng, M. Caban-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang and S. Jin, *Nano Lett.*, 2015, **15**, 1421.
- 21. M. Cheng, S. Duan, H. Fan and R. Wang, *CrystEngComm*, 2016, **18**, 6849.
- 22. X. Long, Z. Ma, H. Yu, X. Gao, X. Pan, X. Chen, S. Yang and Z. Yi, J. Mater. Chem. A, 2016, 4.