Electronic Supplementary Information for

Preparation of Bi₂S₃/carbon quantum dots hybrid materials for enhanced photocatalytic properties under ultraviolet–, visible– and near infrared– irradiations

Jingmin Wang ^a, Xiang Zhang ^a, Ji Wu^{b,*}, Hao Chen ^c, Song Sun ^d, Jun Bao ^d, Shikuo Li ^a and Hong Bi ^{a,*}

- ^a School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P.
 R. China
- ^b Department of Chemistry, Georgia Southern University, 250 Forest Drive, Statesboro, GA, 30460, USA
- ^c Department of Biology, Georgia Southern University, 75 Georgia Avenue, Statesboro, GA, 30460, USA
- ^d National Synchrotron Radiation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science & Technology of China, Hefei 230029, P. R. China

^{*} Corresponding author.

E-mail addresses: bihong@ahu.edu.cn (H. Bi), jwu@georgiasouthern.edu (J. Wu).

Fig. S1 (a) UV–vis–NIR absorption spectra of C–dots, Bi_2S_3 and Bi_2S_3/C –dots hybrid samples.

Fig. S2 (a) SEM and (b) TEM images of the Bi_2S_3 nanotubes; (c) TEM and (d) HRTEM images of C-dots.

Fig. S3 XRD patterns of C–dots, Bi_2S_3 nanotubes and Bi_2S_3/C –dots nanohybrids.

Fig. S4 Thermogravimetric analysis curve of (a) C-dots; (b) Bi_2S_3 nanotubes and Bi_2S_3 /C-dots nanohybrids.

Fig. S5 UV-vis absorption spectra of MB degradation photocatalyzed by different samples under

(a) visible light (420 nm $< \lambda < 780$ nm) irradiation and (b) the daylight for 60 minutes; UV-vis absorption spectra of TC degradation photocatalyzed by different samples under (c) visible light (420 nm $< \lambda < 780$ nm) irradiation and (d) the daylight for 60 minutes.

Fig. S6 Nitrogen absorption-desorption isotherms of Bi_2S_3 nanotubes and Bi_2S_3/C -dots nanohybrids.

Fig. S7 Photocatalytic activities of Bi_2S_3/C -dots nanohybrids for the degradation of MB with or without adding reactive species trapping agents under 60 minutes visible light ($\lambda > 420$ nm) irradiation.

Fig. S8 DMPO spin-trapping ESR spectra of Bi_2S_3 nanotubes in (a) methanol and (b) water under visible light irradiation.

Table S1 Atomic percentages of C-dots.

Samples	С	0	Κ	Si	Ν	Cl	Na
C-dots	58.21	22.48	4.38	7.64	4.54	1.68	1.07