Supporting Information

Aqueous Solution Processable Metal Oxides For High-Performance

Organic and Perovskite Solar Cells

Yan-Hui Lou,^{a,b} and Zhao-Kui Wang^{a,*}

^aJiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China

^bCollege of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215123, China

*Address correspondence to zkwang@suda.edu.cn (Z.K. Wang)

Table of Contents

Figure S1. Optical field distributions in PTB7:PC₇₁BM based organic solar cells.

Figure S2. Impedence Spectra Evaluations of the Interfaces - Impedance response.

Figure S3. Impedence Spectra Evaluations of the Interfaces - Reactance-frequency relation.

Figure S4, Table S1. Device optimization of *s*TMO based perovskite solar cells.

Figure S5, Table S2. Device optimization of PEODT:PSS-TMO based perovskite solar cells.

Figure S6. Histogram of PCEs in PEDOT:PSS-V₂O₅ HTL based perovskite solar cells.

Figure S7. XRD patters of CH₃NH₃PbI_{3-x}Cl_x films.

Figure S8. Cross-sectional SEM and EDX analysis of aged (150 h) perovskite solar cells.

Figure S1. Optical field ($|E|^2$) distributions in PTB7:PC₇₁BM based bulk heterojuncion solar cells incorporting with differnt hole transporting layers of (a) PEDOT:PSS, (b) *s*MoO₃, (c) *s*GeO₂, (d) *s*V₂O₅ and (e) *s*CrO₃. Calculation were carried out under the consideration of the whole visible light range (300~800 nm).

Impedence Spectra Evaluations of the Anode Interfaces

Device structure:

ITO/TMOs (sMoO₃, sGeO₂, sV₂O₅, or sCrO₃)/PTB7:PC₇₁BM/MoO₃/A1

Figure S2. Impedance response in PTB7:PC₇₁BM based hole-dominant devices incorporating with different aqueous solution processed hole transporting layers (a) $sMoO_3$, (b) $sGeO_2$, (c) sV_2O_5 and (d) $sCrO_3$. (e) Equivalent circuit used to fit the data in (a)- (d). Rs represents the resistive losses in the ITO and sTMOs.

Impedence Spectra Evaluations of the Anode Interfaces

Device structure:

ITO/TMOs (sMoO₃, sGeO₂, sV₂O₅, or sCrO₃)/PTB7:PC₇₁BM/MoO₃/Al

Figure S3. Reactance-frequency relations in PTB7:PC₇₁BM based hole-dominant devices incorporating with different aqueous solution processed hole transporting layers (a) $sMoO_3$, (b) $sGeO_2$, (c) sV_2O_5 and (d) $sCrO_3$.

Device Optimization of sTMOs Based Perovskite Solar Cells

Device structure:

ITO/ TMOs (sMoO₃, sGeO₂, sV₂O₅, or sCrO₃)/CH₃NH₃PbI_{3-x}Cl_x/PC₆₁BM/Ag

Figure S4. *J-V* curves of perovskite solar cells using different *s*TMO as the HTLs under AM 1.5G illumination of 100 mW cm².

HTL	$J_{\rm SC}$ (mA/cm ²)	$V_{\rm OC}$ (V)	FF	PCE (%)
sMoO ₃ (1 time)	18.58	0.89	0.53	8.79
$sMoO_3$ (2 time)	19.56	0.90	0.64	11.36
$sMoO_3$ (3 time)	19.61	0.91	0.68	12.23
$sMoO_3$ (4 time)	18.90	0.92	0.66	11.47
$sGeO_2(1 \text{ time})$	18.63	0.88	0.55	8.95
$sGeO_2$ (2 time)	19.27	0.92	0.62	11.02
$sGeO_2$ (3 time)	19.62	0.94	0.66	12.12
$sGeO_2$ (4 time)	18.95	0.90	0.60	10.37
sV_2O_5 (1 time)	17.63	0.92	0.56	9.10
sV_2O_5 (2 time)	19.36	0.94	0.65	11.71
sV_2O_5 (3 time)	19.46	0.96	0.68	12.75
sV_2O_5 (4 time)	19.53	0.93	0.63	11.46
$sCrO_3$ (1 time)	19.04	0.81	0.54	8.33
$sCrO_3$ (2 time)	19.17	0.87	0.57	9.48
$sCrO_3$ (3 time)	19.26	0.88	0.60	10.15
$sCrO_3$ (4 time)	19.06	0.88	0.60	9.98

 Table S1. Cell parameters of perovskite solar cells using different sTMO as HTLs

Device Optimization of PEDOT:PSS-TMOs Based Perovskite Solar Cells

Device structure:

ITO/ PEDOT:PSS-TMOs (sMoO₃, sGeO₂, sV₂O₅, or sCrO₃)/CH₃NH₃PbI_{3-x}Cl_x/PC₆₁BM/Ag

Figure S5. *J-V* curves of perovskite solar cells using different PEDOT:PSS-TMO as the HTLs under AM 1.5G illumination of 100 mW cm².

HTL	$J_{\rm SC}$ (mA/cm ²)	$V_{\rm OC}({ m V})$	FF	PCE (%)
PEDOT:PSS	20.64	0.86	0.68	12.08
PEDOT:PSS-MoO ₃ (6:1)	21.25	0.94	0.67	13.05
PEDOT:PSS-MoO ₃ (5:1)	21.11	0.99	0.67	14.03
PEDOT:PSS-MoO ₃ (4:1)	21.38	0.99	0.72	15.10
PEDOT:PSS-MoO ₃ (3:1)	20.86	1.01	0.68	14.32
PEDOT:PSS	20.54	0.93	0.74	14.13
PEDOT:PSS-V ₂ O ₅ (4:1)	20.86	1.01	0.68	14.32
PEDOT:PSS-V ₂ O ₅ (3:1)	21.02	1.02	0.72	15.56
PEDOT:PSS-V ₂ O ₅ (2:1)	22.38	1.02	0.79	18.03
PEDOT:PSS- $V_2O_5(1:1)$	20.90	1.01	0.67	14.48
PEDOT:PSS	18.57	0.89	0.67	10.97
PEDOT:PSS-GeO ₂ $(5:1)$	19.84	0.94	0.67	12.50
PEDOT:PSS-GeO ₂ (4:1)	21.55	0.96	0.74	15.15
PEDOT:PSS-GeO ₂ $(3:1)$	20.39	0.95	0.72	13.86
$PEDOT:PSS-GeO_{2}(2:1)$	19.44	0.96	0.65	12.10
PEDOT:PSS	18.79	0.91	72	12.37
PEDOT:PSS-CrO ₃ (5:1)	20.29	0.94	70	13.33
PEDOT:PSS-CrO ₃ (4:1)	20.32	0.93	75	14.09
PEDOT:PSS-CrO ₃ (3:1)	21.97	0.94	71	14.50
PEDOT:PSS-CrO ₃ (2:1)	21.07	0.93	67	13.13

 Table S2. Cell parameters of perovskite solar cells using PEDOT:PSS-TMOs as HTLs

Figure S6. A histogram of PCEs measured from 35 PEDOT:PSS- V_2O_5 HTL based perovskite solar cells.

Figure S7. XRD patters of polycrystalline $CH_3NH_3PbI_{3-x}Cl_x$ films deposited on PEDOT:PSS and PEDOT:PSS+V₂O₅ underlayers.

Figure S8. Cross-sectional SEM and EDX analysis of (a) PEDOT:PSS+ V_2O_5 based and (b) PEDOT:PSS based perovskite solar cells (aged, 150h).