# Supporting Information

# High thermoelectric performances of SnSe allotropes

Zi-Yu Hu<sup>#</sup>, Kai-Yue Li<sup>#</sup>, Yong Lu, Yan Huang, Xiao-Hong Shao<sup>\*</sup>

<sup>a</sup>College of Science, Beijing University of Chemical Technology, Beijing, 100029, People's

Republic of China

\*Corresponding author. Email: <u>shaoxh@mail.buct.edu.cn</u>

#: These authors contributed equally to this work



Fig. S1 Schematic structure of bonds and angles for the five optimized SnSe monolayer polymorphs.

| Phases  | R1   | R2   | R3   | R4   | R5   | R6   | θ1     | θ2     | θ3     | θ4     | θ5    | θ6   |
|---------|------|------|------|------|------|------|--------|--------|--------|--------|-------|------|
| α-SnSe  | 2.60 | 2.88 | -    | -    | -    | -    | 94.28  | 104.77 | 92.80  | -      | -     | -    |
| β- SnSe | 2.66 | -    | -    | -    | -    | -    | 90.19  | -      | -      | -      | -     | -    |
| γ- SnSe | 3.05 | 2.62 | -    | -    | -    | -    | 100.78 | 92.30  | 90.23  | -      | -     | -    |
| δ- SnSe | 2.81 | 2.79 | 2.64 | -    | -    | -    | 102.17 | 93.30  | 93.49  | 103.27 | -     | -    |
| ε- SnSe | 2.69 | 2.65 | 2.69 | 2.69 | 2.69 | 2.65 | 96.13  | 122.52 | 101.28 | 100.95 | 87.66 | 79.1 |
|         |      |      |      |      |      |      |        |        |        |        |       | 1    |

**Table. S1** The detailed parameters of bonds and angles for the five optimized SnSe monolayer polymorphs.



**Fig. S2** The evolution of the total potential energy with simulation time of  $\alpha$ -SnSe,  $\beta$ -SnSe,  $\gamma$ -SnSe,  $\delta$ -SnSe and  $\epsilon$ -SnSe single-layer during ab initio molecular dynamics simulations and the snapshots of the final atomic configurations at 300K.

**Table S2.** The calculated elastic constants (C<sub>ij</sub>), bulk modulus (B), shear modulus (G), density ( $\rho$ ), volume (V), transverse sound velocity ( $v_s$ ), longitudinal sound velocity ( $v_l$ ), , and minimum lattice thermal conductivity ( $\kappa_{min}$ ) of  $\alpha$ -SnSe,  $\beta$ -SnSe,  $\gamma$ -SnSe,  $\delta$ -SnSe and  $\epsilon$ -SnSe.

| Phases | C <sub>11</sub> (Gpa) | C <sub>12</sub> (Gpa) | C <sub>44</sub> (Gpa) | ρ(g/cm <sup>3</sup> ) | V (Å <sup>3</sup> ) | B(Gpa) | G(Gpa) | V <sub>s</sub> (m/s) | V <sub>l</sub> (m/s) | κ <sub>min</sub> |
|--------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|--------|--------|----------------------|----------------------|------------------|
| α      | 20.9                  | 4.42                  | 3.57                  | 6.66                  | 49.31               | 9.91   | 5.44   | 1886                 | 3349                 | 0.175            |
| ß      | 15 7                  | 11 20                 | 5 17                  | 7 52                  | 21.86               | 12 76  | 3.08   | 1861                 | 3065                 | 0 156            |
| р      | 13.7                  | 11.29                 | 5.17                  | 1.52                  | 21.00               | 12.70  | 5.98   | 1801                 | 3903                 | 0.150            |
| γ      | 34.80                 | 4.31                  | 3.92                  | 7.72                  | 42.50               | 14.47  | 8.45   | 2254                 | 3934                 | 0.219            |
| δ      | 15.49                 | 5.22                  | 5.20                  | 6.64                  | 99.07               | 8.64   | 5.174  | 2087                 | 3618                 | 0.162            |
| 3      | 17.43                 | 9.18                  | 7.83                  | 7.55                  | 87.16               | 11.93  | 6.35   | 2222                 | 3982                 | 0.184            |

**Table. S3** The detailed parameters of effective masses at VBM, VBM1, CBM, CBM1 and Seebeck coefficient with the carrier concentration of  $5 \times 10^{19}$  cm<sup>-3</sup> at 300 K for the five optimized SnSe monolayer polymorphs.

| Phases | m*(m0) | m*(m0) | m*(m0) | m*(m0) | Seebeck coefficient |
|--------|--------|--------|--------|--------|---------------------|
|        | VBM    | CBM    | VBM1   | CBM1   | $(\mu V/K)$         |
| α      | 0.15   | 0.17   | 0.17   | 0.23   | 66.37               |
| β      | 1.15   | 1.10   | 1.36   | 0.45   | 348                 |
| γ      | 1.07   | 0.11   | 0.18   | 0.04   | 325                 |
| δ      | 0.29   | 0.71   | 0.07   | 0.07   | 71.32               |
| 3      | 1.15   | 0.93   | 1.68   | 0.23   | 265                 |



**Fig. S3** Thermoelectric properties as a function of temperature from 300K to 800K for holedoped SnSe crystals. (a) Electrical conductivity. (b) Seebeck coefficient. (c)Power factor (PF). (d) Total thermal conductivity. (e) ZT values for  $\alpha$ -SnSe.



**Fig. S4** Thermoelectric properties as a function of temperature from 300K to 800K for holedoped SnSe crystals. (a) Electrical conductivity. (b) Seebeck coefficient. (c)Power factor (PF). (d) Total thermal conductivity. (e) ZT values for  $\beta$ -SnSe.



**Fig. S5** Thermoelectric properties as a function of temperature from 300K to 800K for holedoped SnSe crystals. (a) Electrical conductivity. (b) Seebeck coefficient. (c)Power factor (PF). (d) Total thermal conductivity. (e) ZT values for  $\gamma$ -SnSe.



**Fig. S6** Thermoelectric properties as a function of temperature from 300K to 800K for holedoped SnSe crystals. (a) Electrical conductivity. (b) Seebeck coefficient. (c)Power factor (PF). (d) Total thermal conductivity. (e) ZT values for  $\delta$ -SnSe.



**Fig. S7** Thermoelectric properties as a function of temperature from 300K to 800K for holedoped SnSe crystals. (a) Electrical conductivity. (b) Seebeck coefficient. (c)Power factor (PF). (d) Total thermal conductivity. (e) ZT values for  $\varepsilon$ -SnSe.

# **Crystal Coordinate Lists:**

#### 1. alpha.cif

data alpha audit creation date 2017-08-21 audit creation method 'Materials Studio' symmetry\_space\_group\_name\_H-M 'PMN21' \_symmetry\_Int\_Tables\_number 31 \_symmetry\_cell\_setting orthorhombic loop\_ \_symmetry\_equiv\_pos\_as\_xyz x,y,z -x+1/2, -y, z+1/2x+1/2,-y,z+1/2 -x,y,z cell length a 3.9500 \_cell\_length\_b 21.5100 \_cell\_length\_c 4.8200 \_cell\_angle\_alpha 90.0000 cell angle beta 90.0000 90.0000 cell angle gamma loop \_atom\_site\_label \_atom\_site\_type\_symbol atom site fract x \_atom\_site\_fract\_y atom site fract z \_atom\_site\_U\_iso\_or\_equiv \_atom\_site\_adp\_type atom site occupancy Sn1 Sn 0.00000 0.43644 0.09011 0.00000 Uiso 1.00 Se1 Se -0.50000 0.44350 0.52589 0.00000 Uiso 1.00 loop\_ geom bond atom site label\_1 geom bond atom site label 2 \_geom\_bond\_distance \_geom\_bond\_site\_symmetry\_2 \_ccdc\_geom\_bond\_type Sn1 Se1 2.601 2\_464 S 2.887 1\_655 S Sn1 Se1 2.601 2 465 S Se1 Sn1 Se1 Sn1 2.887 1 455 S

## 2. beta.cif

data beta audit creation date 2017-08-21 \_audit\_creation\_method 'Materials Studio' symmetry space group name H-M 'P3M1' \_symmetry\_Int\_Tables\_number 156 \_symmetry\_cell\_setting trigonal loop\_ \_symmetry\_equiv\_pos\_as\_xyz x,y,z -y,x-y,z -x+y,-x,z -y,-x,z -x+y,y,z x,x-y,z \_cell\_length\_a 3.7812 cell length b 3.7812 cell length c 21.0000 \_cell\_angle\_alpha 90.0000 \_cell\_angle\_beta 90.0000 \_cell\_angle\_gamma 120.0000 loop\_ \_atom\_site\_label atom site type symbol \_atom\_site\_fract\_x \_atom\_site\_fract\_y \_atom\_site\_fract\_z \_atom\_site\_U\_iso\_or\_equiv \_atom\_site\_adp\_type \_atom\_site\_occupancy Sn1 Sn 0.66667 0.33333 0.44595 0.01267 Uiso 1.00 Se1 Se 0.33333 0.66667 0.37292 0.01267 Uiso 1.00 loop \_geom\_bond\_atom\_site\_label\_1 \_geom\_bond\_atom\_site\_label\_2 \_geom\_bond\_distance \_geom\_bond\_site\_symmetry\_2 \_ccdc\_geom\_bond\_type 2.668 1 655 S Sn1 Se1 Sn1 Se1 2.668 1\_545 S Se1 Sn1 2.668 1\_455 S 2.668 1\_565 S Se1 Sn1

#### 3. gamma.cif

```
data gamma
audit creation date
                          2017-08-21
_audit_creation_method
                           'Materials Studio'
symmetry_space_group_name_H-M 'PMN21'
_symmetry_Int_Tables_number
                               31
_symmetry_cell_setting
                           orthorhombic
loop
_symmetry_equiv_pos_as_xyz
 x,y,z
 -x+1/2,-y,z+1/2
x+1/2,-y,z+1/2
 -x,y,z
_cell_length_a
                        3.7800
_cell_length_b
                        21.1330
_cell_length_c
                        6.1100
cell angle alpha
                         90.0000
cell angle beta
                        90.0000
_cell_angle_gamma
                           90.0000
loop
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
atom site fract y
_atom_site_fract_z
_atom_site_U_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
Sn1 Sn 0.50000 0.54663 0.06987 0.01267 Uiso 1.00
     Se 0.50000 0.53924 0.56954 0.01267 Uiso 1.00
Se1
loop
geom bond atom site label 1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_2
_ccdc_geom_bond_type
     Se1
           2.620 2_564 S
Sn1
           2.620 2 664 S
Sn1
     Se1
           2.620 2 565 S
Se1
     Sn1
Se1
     Sn1
           2.620 2 665 S
```

#### 4. deta.cif

data deta audit creation date 2017-08-21 \_audit\_creation\_method 'Materials Studio' symmetry space group name H-M 'PCA21' \_symmetry\_Int\_Tables\_number 29 \_symmetry\_cell\_setting orthorhombic loop \_symmetry\_equiv\_pos\_as\_xyz x,y,z -x,-y,z+1/2 x+1/2,-y,z -x+1/2, y, z+1/2cell length a 6.1400 \_cell\_length\_b 21.0000 \_cell\_length\_c 6.2300 cell angle alpha 90.0000 cell angle beta 90.0000 \_cell\_angle\_gamma 90.0000 loop \_atom\_site\_label \_atom\_site\_type\_symbol \_atom\_site\_fract\_x atom site fract y \_atom\_site\_fract\_z \_atom\_site\_U\_iso\_or\_equiv \_atom\_site\_adp\_type \_atom\_site\_occupancy Sn1 Sn 0.97027 0.56204 0.76183 0.01267 Uiso 1.00 Se1 Se 0.48587 0.43773 0.21076 0.01267 Uiso 1.00 loop geom bond atom site label 1 \_geom\_bond\_atom\_site\_label\_2 \_geom\_bond\_distance \_geom\_bond\_site\_symmetry\_2 \_ccdc\_geom\_bond\_type Se1 2.819 2\_665 S Sn1 2.798 3 566 S Sn1 Se1 2.644 4 655 S Sn1 Se1 Se1 Sn1 2.819 2 664 S 2.798 3\_464 S Se1 Sn1 2.644 4\_654 S Se1 Sn1

## 5. epsilon.cif

data CONTCAR-epsilon audit creation date 2017-08-21 audit creation method 'Materials Studio' symmetry space group name H-M 'PCA21' \_symmetry\_Int\_Tables\_number 29 \_symmetry\_cell\_setting orthorhombic loop \_symmetry\_equiv\_pos\_as\_xyz x,y,z -x,-y,z+1/2 x+1/2,-y,z -x+1/2,y,z+1/2 cell length a 7.1008 \_cell\_length\_b 21.6686 \_cell\_length\_c 6.6009 cell angle alpha 90.0000 cell angle beta 90.0000 \_cell\_angle\_gamma 90.0000 loop \_atom\_site\_label \_atom\_site\_type\_symbol \_atom\_site\_fract\_x atom site fract y \_atom\_site\_fract\_z \_atom\_site\_U\_iso\_or\_equiv \_atom\_site\_adp\_type \_atom\_site\_occupancy Sn1 Sn 0.81142 0.54591 0.13349 0.01267 Uiso 1.00 Se 0.86529 0.45994 0.84600 0.01267 Uiso 1.00 Se1 loop\_ geom bond atom site label 1 \_geom\_bond\_atom\_site\_label\_2 \_geom\_bond\_distance \_geom\_bond\_site\_symmetry\_2 \_ccdc\_geom\_bond\_type Se1 2.687 1\_554 S Sn1 2.693 2 764 S Sn1 Se1 2.648 4 654 S Sn1 Se1 Se1 Sn1 2.687 1 556 S Se1 Sn1 2.693 2\_765 S 2.648 4\_655 S Se1 Sn1