Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supplementary information

The relationship between cell adhesion force activation on nano/microtopographical surfaces and temporal dependence of cell morphology

Tamaki Naganuma*

* Research Centre for Functional Materials, National Institute for Materials Science 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.

Fig. S1 The physical and chemical characteristics of a cerium oxide nanoparticle-dispersed PLLA matrix nanocomposite surface: (a) X-ray diffraction spectra of cerium oxide nanoparticles (CNP), CNP nanolayer deposited on PLLA substrate¹⁻³ and PLLA/CNP nanocomposite, measured by X-ray diffraction analysis (RINT 2500, Rigaku Corporation, JAPAN); (b) element spectra of PLLA matrix, CNP nanolayer deposited on PLLA substrate¹⁻³ and PLLA/CNP nanocomposite, detected by Field Emission Scanning Electron Microscopes (FE-SEM, S-4800, Hitachi High-Technologies Corporation, JAPAN); and (c) chemical bond spectra of PLLA matrix and PLLA/CNP nanocomposite, detected by Attenuated Total Reflection–Fourier Transform Infrared spectrometer (ATR-FTIR, Nicolet 4700, Thermo Fisher Scientific K.K. JAPAN). This data confirms that the top surface of PLLA/CNP nanocomposite can be used as a nano-rough PLLA surface.

Fig. S2 Histogram of cell detachment force and work on flat and nano-topographical surfaces at cell adhesion time after initial attachment on the cantilever, $t_a < 1$ h and $t_a > 1$ h.

	de an	Measured cell etachment force nd/or work (W) or	(F) Time nα periods	t₂ on β	β	Functionalization on cantilever	t _d *	Force activation on topography	Fig.
Scope 1	Nano-rough	Nano / Flat	Initial	< 1 h	TL-cantilever	Con A	1 s	0	5c
		Nano / Flat	Intermediate	> 1 h	TL-cantilever	Con A	1 s	×	5d
	Micro-Dot	Dot 5	Initial	< 1 h	TL-cantilever	Con A	1 s	×	6b
		Dot 5	Initial/Intermediate	~ 1 h	TL-cantilever	Con A	10 s	×10	6c
		Dot 40 / Flat	Intermediate	>1h	TL-cantilever	Con A	10 s	0	6d, 6e
	Micro-Line	Line 5	Initial	<1h	TL-cantilever	Con A	1 s	0	7a
		Line 5 / Flat	Initial	< 1 h	TL-cantilever	Con A	10 s	0	7a
		Line 5 / Line 40	Intermediate	> 1 h	TL-cantilever	Con A	10 s	0	7b, 7c
Scope 2	Micro-Line	Line 5	Initial	> 1 h	TL-cantilever	Con A	10 s	0	7a
		Line 5	Intermediate	2 ~ 12 h	TL-cantilever	Con A	10 and 60 s	s O	8
		Line 5	Long-term***	> 24 h	Line 5	FN	180 s**	0	9

Table S1 Detailed measurement conditions of cell detachment force properties on substrates in each figure.

* Duration time of a cell (immobilized on TL-cantilever) on α -substrate

** Duration time of a cantilever (NSC12, type C) on cell surface, necessary to capture a cell from a-substrate

*** To evaluate cell adhesion force in long-term periods, a cell-capture method, in which a cantilever directly captures a cell attached on a-substrate, is used.

Reference

1. T. Naganuma and E. Traversa, *Biomaterials*, 2012, 4, 4950-4953.

2. T. Naganuma and E. Traversa, *Biomaterials*, 2014, **35**, 4441–4453.

3. T. Naganuma and E. Traversa, *Nanoscale*, 2014, 6, 6637-6645.