Supporting Information

One-step synthesis of SnCo nanoconfined in hierarchical carbon nanostructures for lithium ion battery anode

Jian Qin^{†, a}, Dongye Liu^{†, a}, Xiang Zhang^a, Naiqin Zhao^{a, b}, Chunsheng Shi^a, En-Zuo Liu^a, Fang He^a, Liying Ma^a, Jiajun Li^a, and Chunnian He^{*, a, b}

^a School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China

[†]These authors contributed equally.

Fig. S1 EDS pattern of the SnCo@CNT-3DC composite.

Fig. S2 (a) TEM image of the SnCo@CNT-3DC shown in Fig. 3d. (b, c) Fourier transforms and interplanar spacing measurements of particle 1 and 2 shown in Fig.S2a, respectively. The

interplanar spacings of these two nanoparticles are measured to be ≈ 0.279 nm and ≈ 0.207 nm, which are well matched with the d-spacing of Sn (101) and CoSn₂ (202), respectively.

Fig. S3 (a) SEM image, (b) TEM image of the SnCo/C composite.

Table S1. Conductivity of the SnCo@CNT-3DC and SnCo/C composites.

Sample	Pressure (MPa)	Thickness (mm)	Conductivity (S cm ⁻¹)
SnCo@CNT-3DC	17	0.77	109.29
SnCo/C	17	0.76	11.99

Fig. S4. (a) Raman spectrums of the SnCo@CNT-3DC and SnCo/C composites. (b) TG and DSC curves of the SnCo@CNT-3DC composite. (c) N_2 adsorption-desorption isotherms and (d) pore distribution of the SnCo@CNT-3DC composites.

Fig. S5 (a) XRD pattern of the SnCo@CNT-3DC composite after TG test. (b) TG curve of the SnCo/C composite.

Fig. S5a shows the XRD pattern of the SnCo@CNT-3DC composite after TG test. It can be seen that the final products are SnO₂ and Co₃O₄. And the content of final products from TG analysis is 55 wt%. So, based on the atomic ratio of Sn to Co in the precursor (4:1), the Sn and Co contents are calculated using the following equation:

$$Sn wt\% \times \frac{Sn02(molecular weight)}{Sn(molecular weight)} + Co wt\% \times \frac{Co304(molecular weight)}{3 \times Co(molecular weight)} = 55\%$$
(S1)

$$\frac{Sn wt\%}{Sn(molecular weight)} \cdot \frac{Co wt\%}{Co(molecular weight)} = 4:1$$
(S2)

Sn wt% = 38.2 %; Co wt% = 4.7 %

Fig. S6 XPS spectrum of the SnCo@CNT-3DC composite.

Fig. S7 (a) Cycling performance and (b) rate performance of the SnCo@CNT-3DC composites with different Sn and Co ratios, in which the SnCo@CNT-3DC (4:1) exhibits the best electrochemical performance.

Fig. S8 (a) EIS curves of the SnCo@CNT-3DC and SnCo/C composite electrodes. (b) Calculation of Li⁺ transfer coefficient of the SnCo@CNT-3DC and SnCo/C composite electrodes.

We also calculated the Li⁺ transfer coefficient using equations as following:

$$D = R^2 T^2 / 2n^4 F^4 \sigma 2 w A^2 C^2$$
(S3)

$$Z' = R + \sigma_w \omega^{-1/2} \tag{S4}$$

The R, T, n, F, σ_w , A and C in equations present the gas constant, the absolute temperature, charge-transfer number, the Faraday constant, the Warburg coefficient, the electrodes' surface area and the Li⁺ concentration in the electrode, respectively. Since the values of R, T, n, F, A and C in above equations are almost the same for the SnCo@CNT-3DC and SnCo/C electrodes, the diffusion coefficient of these two electrodes are in direct proportion to the square of σ_w , which is the slope of the impedance to $\omega^{-1/2}$. As shown in Figure S4b, the diffusion coefficient of the SnCo@CNT-3DC electrode is more than 10 times higher than that of the SnCo/C electrode, which is in good consistency with the result shown in Figure 6c.

Fig. S9 (a, b) TEM images of the SnCo@CNT-3DC electrode after 100 cycles at a current density of 0.1 A g^{-1}

Fig. S10 Schematic illustration of structural advantages of the SnCo@CNT-3DC for lithium storage.

Materials	Current density (A g ⁻¹)	Discharge capacity (mAh g ⁻¹)	Capacity after (x) cycles	Capacity at high current density (mAh g ⁻¹)
SnCo@CNT-3DC	0.1	739	826(100)	450(2 A g ⁻¹)
(This work)	5	350	280(1000)	380(5 A g ⁻¹)
Sn-Co@C ^{S1}	0.1	945	818(100)	472 (2 A g ⁻¹)
SnCo/PAN-CNFs ^{S2}	0.6	560	548(100)	~280 (3.025 A g ⁻¹) ~200 (6.05 A g ⁻¹)
meso-Co _{0.3} Sn _{0.7} S3	~0.7	~663	~530(50)	~400 (2 A g ⁻¹)
Sn-Co@graphene ^{S4}	0.5	672	560(60)	~483 (0.8 A g ⁻¹)
GNS-SnCo ^{S5}	~0.072	1100	600(60)	~500(0.72 A g ⁻¹)
Sn-Co alloy film ^{S6}	0.148	~850	~650(60)	/
CoSn ₅ ^{S7}	0.1	~500	480(100)	/
CoSn ₃ -MWCNTs ^{S8}	0.1	~480	~350(20)	/
Co-Sn/CNF ^{S9}	0.161	~710	560(80)	~400(4.3 A g ⁻¹)

Table S2 Electrochemical performances of various SnCo anode materials for LIBs.

Reference

- S1 X. Shi, H. H. Song, A. Li, X. H. Chen, J. S. Zhou and Z. K. Ma, J. Mater. Chem. A, 2017, 5, 5873–5879
- S2 J. W. Shin, W. H. Ryu, K. S. Park and I. D. Kim, ACS Nano, 2013, 7, 7330-7341.
- S3 G. O. Park, J. Yoon, J. K. Shon, Y. S. Choi, J. G. Won, S. B. Park, K. H. Kim, H. S. Kim, W. S. Yoon and J. M. Kim, *Adv. Funct. Mater.*, 2016, **26**, 2800–2808
- S4 J. S. Zhu, D. L. Wang, T. F. Liu and C. F. Guo, *Electrochim. Acta*, 2014, 125, 347-353.
- S5 P. Chen, L. Guo and Y. Wang, J. Power Sources, 2013, 222, 26-532.

- S6 C. Yang, D. W. Zhang, Y. B. Zhao, Y. H. Lu, L. Wang and J. B. Goodenough, J. Power Sources, 2011, **196**, 10673-10678.
- S7 F. X. Xin, X. L. Wang, J. M. Bai, W. Wen, H. J. Tian, C. S. Wang and W. Q. Han, *J. Mater. Chem. A*, 2015, **3**, 7170-7178.
- S8 C. X. Zhai, N. Du, H. Zhang, J. X. Yu, P. Wu, C. M. Xiao and D. R. Yang, *Nanoscale*, 2011, 3, 1798-1801.
- S9 B. O. Jang, S. H. Park and W. J. Lee, J. Alloy. Compd., 2013, 574, 325-330.