Supporting Information

A General Strategy for Directly Synthesizing High-Coercivity L1₀-FePt Nanoparticles

Wenjuan Lei,¹ Yongsheng Yu,^{1*} Weiwei Yang,^{1*} Ming Feng² and Haibo Li²

¹MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

²Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China

*To whom correspondence should be addressed. Email: ysyu@hit.edu.cn and yangww@hit.edu.cn

This file includes:

Figure S1 to S7

Figure S1. The XRD curves of the FePt NPs synthesized at 350 °C for different reaction times.

Figure S2. Typical TEM images of the FePt NPs synthesized at 350 °C for (A) 1 h, (B) 3 h,(C) 6 h, (D) 8 h.

Figure S3. Typical TEM images of the FePt NPs synthesized at (A) 290 °C, (B) 310 °C, (C) 330 °C.

Figure S4. The XRD curves of the as-synthesized FePt NPs synthesized at temperature of 290°C, 310 °C and 330 °C.

Figure S4. The hysteresis loops of the as-synthesized FePt NPs synthesized at different temperature.

Figure S6. The typical TEM images of the FePt NPs synthesized with the same reaction condition except changing K_2PtCl_6 with $Pt(acac)_2$.

Figure S7. The hysteresis loops (A) and the hysteresis loops (B) of the FePt NPs synthesized with the same reaction condition except changing K_2PtCl_6 with $Pt(acac)_2$.