Improved catalytic activity of $Mo_{1-x}W_xSe_2$ alloy nanoflowers promotes efficient hydrogen evolution reaction in both acidic and alkali aqueous solutions

Electronic Supporting Information

Oren E. Meiron,^a Vasu Kuraganti,^a Idan Hod^a, Ronen Bar-Ziv^{a,b} and Maya Bar-Sadan^{a,*}

^a Ben-Gurion University of the Negev, Department of Chemistry, Beer-Sheva

^b Nuclear Research Center Negev, Beer-Sheva 84190, Israel.

*Corresponding author: barsadan@bgu.ac.il

Figure S1. EIS measurement and semi-circle fitting of $Mo_{0.57}W_{0.43}Se_2$ at 200 mV overpotential. The fitting was performed according to the circuit provided in the upper left corner (Rs, series resistance. Rct, charge-transfer resistance. CPE, constant phase element for chemical capacitance).

Figure S2. HRTEM images and inter-planar spacing of (a) $MoSe_2$, (b) $Mo_{0.57}W_{0.43}Se_2$ and (c) WSe_2 . Insets show high resolution images of the 100 plane. Inter-planar spacing was extracted from FFT.

Figure S3. HAADF-STM and EDS maps of $Mo_{1-x}W_xSe_2$ alloys. The maps show the presence of both Mo and W in (a) $Mo_{0.75}W_{0.25}Se_2$, (b) $Mo_{0.57}W_{0.43}Se_2$ and (c) $Mo_{0.25}W_{0.75}Se_2$. Red = Se, green = Mo and Yellow = W.

Figure S4. ATR-FTIR spectra of typical alloys before (black line) and after (dark blue line) ligand stripping treatment, showing a reduction of more than 90% in the oleylamine capping ligands.

Figure S5. Stability analysis of $Mo_{1-x}W_xSe_2$ alloys. (a) Stability analysis of $Mo_{0.57}W_{0.43}Se_2$ in acid and (b) Stability analysis of $Mo_{0.75}W_{0.25}Se_2$ in alkaline solution. The electrode was cycled between -400 to 100 mV (vs SHE) at a scan rate of 100 mV/sec under Ar.

Figure S6. Comparison between MoSe₂ produced by two synthetic procedures. SEM images of (a) MoSe₂ nanoflowers produced by the procedure described herein, (b) S-MoSe₂ nanoflowers produced by an alternative procedure and (c) XRD spectra of the two MoSe₂ nanoflowers normalized to AUC.

		Feed ratio		From XPS		
		Мо	W	Мо	W	Ratio
MoWSe	x=0.00	1.00	0.00	1.00	0.00	0.00
	x=0.25	0.75	0.25	0.75	0.25	0.25
	x=0.43	0.50	0.50	0.57	0.43	0.43
	x=0.75	0.25	0.75	0.25	0.75	0.75
	x=1.00	0.00	1.00	0.00	1.00	1.00

Table S1. Elemental analysis from XPS spectra. The elemental calculation error is ± 1 % for all the results.

 Table S2.
 Electrochemical analysis comparison between MoSe2 and S-MoSe2

	Ac	id	Alkaline		
	η [mV] at 10 mA cm ⁻²	Tafel from polarization curves [mV/dec]	η [mV] at 10 mA cm ⁻²	Tafel from polarization curves [mV/dec]	
MoSe ₂ (this work)	243	93	310	114	
S-MoSe ₂	205	73	260	96	

Table S3. Elemental analysis of MoSe₂ and S-MoSe₂ showing the different Mo/Se ratio.

	Mo /%	Se /%	Ratio
MoSe ₂	35±1	64±1	1.83
S-MoSe ₂	33±1	67±1	2.03

Table S4: The HER activity of the $Mo_{0.57}W_{0.43}Se_2$, $MoSe_2$ and $S-MoSe_2$ and the reported TMD-based catalysts.

Catalyst	Overpotential	Tafel slope	Electrolyte	Comment
	at 10 mA/cm ²	(IIIV/decade)		
Mo _{0.57} W _{0.43} Se ₂	209	76	0.5M H ₂ SO ₄	
Mo _{0.75} W _{0.25} Se ₂	262	101	0.5M KOH	Currentwork
MoSe ₂	243	93	0.5M H ₂ SO ₄	
S-MoSe ₂	205	73	0.5M H ₂ SO ₄	
Defect rich MoS ₂ ⁷	120 (onset at -1 mA/cm ²)	50	0.5M H ₂ SO ₄	
Double-gyroid MoS ₂ ⁸	150-200 (onset at -1 mA/cm²)	50	0.5M H ₂ SO ₄	
MoSe ₂ nanoflowers ¹⁰	300 (at -13 mA/cm²)	98	0.5M H ₂ SO ₄	
WS ₂ ¹⁶	~230 (at -2 mA/cm²)	-	Acid	
MoS _{1.7} Se _{0.3} Nanobelts ¹⁷	139 (at -20 mA/cm²)	65	0.5M H ₂ SO ₄	
$W(S_{0.48}Se_{0.52})_2^{18}$	-	99	1M H ₂ SO ₄	iR corrected
MoS _{1.0} Se _{1.0} ¹⁹	-	56	0.5M H ₂ SO ₄	
Mo _{0.5} W _{0.5} Se ₂ ²⁰	107 (at -1 mA/cm ²)	57	Acid	
MoSe ₂ ²⁰	112	44	Acid	
Ni-MoS ₂ ²⁴	98	60	1M KOH	
Amorphous MoS _x films ²⁴	540 (at 4 mA/cm ²)	-	0.1M KOH	
MoS ₃ Low loading ³⁴	250 (at -20 mA/cm ²)	47	1M H ₂ SO ₄	
MoS ₃ high loading ³⁴	240 (at -20 mA/cm²)	63	1M H ₂ SO ₄	