Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2018

Table S1. Calcium concentration in ethanol/dw mixture 3/7 for alginate crosslinking in PCL/AL NF.

|                               | CaCl <sub>2</sub> (%, wt) | CaCl <sub>2</sub> (mM) | COO-: Ca <sup>2+</sup> |
|-------------------------------|---------------------------|------------------------|------------------------|
| ALNF1 (ALNF <sub>high</sub> ) | 2.000                     | 180                    | 1:8500                 |
| ALNF2                         | 0.240                     | 21                     | 1:1000                 |
| ALNF3                         | 0.100                     | 9                      | 1:500                  |
| ALNF4 (ALNF <sub>mid</sub> )  | 0.020                     | 1.8                    | 1:100                  |
| ALNF5                         | 0.010                     | 0.9                    | 1:50                   |
| ALNF6 (ALNF <sub>low</sub> )  | 0.006                     | 0.54                   | 1:30                   |
| ALNF7                         | 0.002                     | 0.18                   | 1:10                   |
| ALNF0                         | -                         | -                      | -                      |



Figure S1. Alginate nanofiber suspension in distilled water after discarding PCL shell.

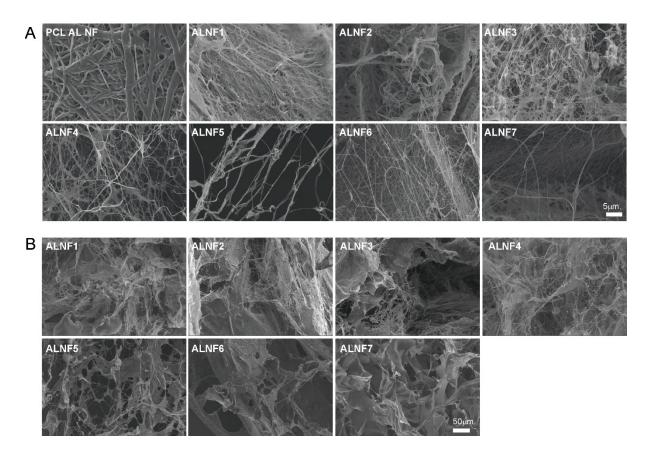



Figure S2. Morphology of freeze dried PCL/AL nanofiber and alginate nanofiber by scanning electron microscope with (A) high and (B) low magnification.

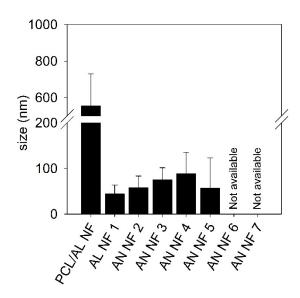



Figure S3. The average fiber diameter according to calcium concentration that  $50 \sim 70$  fiber diameter were measured in SEM image.

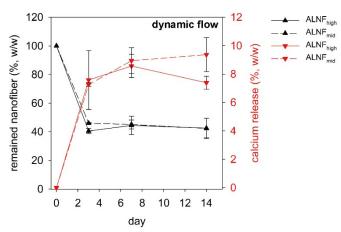



Figure S4. Remaining weight of nanofiber and calcium release profile in phosphate buffer saline with 200rpm shaking at 37°C.

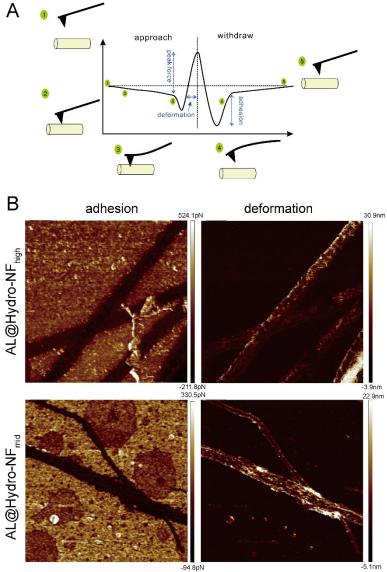



Figure S5. Scheme of nanoindentation process by PF-QNM mode and the profiles obtained at each of steps.