Supporting Information

Efficient and Long-Lifetime Full-Color Light-Emitting Diodes Using High Luminescence Yield Thick-Shell Quantum Dots

Huaibin Shen, $^{\dagger,\ddagger}Q$ ingli Lin, $^{\dagger}W$ eiran Cao, ‡ Chenchen Yang, ‡ Nathan T. Shewmon, ‡

Hongzhe Wang,[†] Long Yu,[‡] Lin Song Li,^{†*} and Jiangeng Xue^{‡*}

[†]Key Laboratory for Special Functional Materials of Ministry of Education, Henan

University, Kaifeng 475004, China

‡ Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA

* Corresponding authors: jxue@mse.ufl.edu, lsli@henu.edu.cn

Figure S1. (a-c) Absorption and PL spectra, (d-f) TEM images, and high-resolution TEM (HRTEM) images (inset) of blue, green, and red thick-shell core/shell QDs.

Figure S2. EL spectra of blue (a), green (b), and red (c) QLEDs under different applied voltages.

Material	Molecular structure	HOMO/LUMO (eV)	Hole mobility (cm ² V ⁻¹ s ⁻¹)
TFB	-+C	5.3 / 2.3	1.0 x 10 ⁻²
PVK		5.8 / 2.2	2.5 x 10 ⁻⁶
ТСТА	La do	5.7 / 2.4	1.0 x 10 ⁻⁵
Poly:TPD		5.2 / 2.3	1.0 x 10 ⁻⁴
СВР	3-0-0-3	6.0 / 2.9	1.0 x 10 ⁻³

Table S1. Summary of the electrical properties of different hole transport materials.

Figure S3. Comparison of device performance of QLEDs using green-emitting, thickshell core/shell QDs with different thicknesses of QD layers.

Figure S4. The PL spectra of $Zn_{1-x}Cd_xSe/ZnS$ core/shell QDs with different shell thickness.

Figure S5. (a) Current density (J) at maximum EQE and maximum luminous; and (b) peak luminous efficiency (η_A) and maximum power efficiency (η_P) as a function a shell thickness.

Figure S6. (a) Current density (*J*) and luminance (*L*) of the devices based on QDs with different shell thickness as a function of driving voltage (*V*). (b) Current efficiency (η_A) and external quantum efficiency (η_{EQE}) of these devices as a function of *L*. (c) Power efficiency (η_p) of these devices as a function of *L*.

Figure S7. Current-density-voltage (*J-V*) characteristics of electron- and hole-only devices based on different shell thickness QDs. (Electron only device structure: ITO/ZnO (30 nm)/QDs (40 nm)/ZnO (30 nm)/Al; Hole only device structure: ITO/PEDOT:PSS (30 nm)/TFB (40 nm)/QDs (40 nm)/MoO_x (30 nm)/Al).

Figure S8. The operational lifetime characteristics of blue QLEDs, the luminance of QLEDs was measured during the continuous operation at a constant current density corresponding to an initial luminance of 4,000 cdm⁻² T_{70} is only 124 min (Blue-1, with TFB HTL) and 36 min (Blue-2, with PVK HTL). The operating voltage bias was increased from 4.12 V to 5.07 V (TFB), and from 8.2 V to 8.9 V (PVK).