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Calculation of the photothermal conversion efficiency

As follows, the photothermal conversion efficiency (η) of mPt@mSiO2-

GdDTPA   nanosystems was calculated according to the previous reported methods1. 

                                              
𝜂 =

ℎ𝑠(𝑇𝑚𝑎𝑥 ‒ 𝑇𝑚𝑎𝑥,𝐻2𝑂)

𝐼(1 ‒ 10
‒ 𝐴808)

(1)

Where h is heat transfer coefficient, S is the surface area of the container, Tmax is 

the equilibrium temperature of mPt@mSiO2-GdDTPA nanosystems, Tmax,H2O is the 

equilibrium temperature of water. I is the output power of 808 nm laser. And A808 is 

the absorption intensity of mPt@mSiO2-GdDTPA nanosystems at 808 nm. The value 

of hS is derived according to eq 2,3,4:

We introduced a system time constant τs and a dimensionless term , they were 

defined as:

                                                      
𝜃 =

𝑇 ‒ 𝑇𝑠𝑢𝑟𝑟

(𝑇𝑚𝑎𝑥 ‒ 𝑇𝑠𝑢𝑟𝑟)

(2)                                       
  𝜏𝑠 =

∑
𝑖

𝑚𝑖𝐶𝑝,𝑖

ℎ𝑠

(3)

                                                          (4)𝑡 =‒ 𝜏𝑠𝑙𝑛𝜃

hs can be calculated from equation 3 and the unit is mW/C (with τs = 188.53 s, 

m = 0.44 g, C = 4.2 J/g). Substituting I = 1.5 W, A808 = 0.30, Tmax  Tmax,H2O = 21.2 C 

to equation 1, the photothermal conversion efficiency (η) of mPt@mSiO2-GdDTPA 

nanosystems was calculated to be 27%.
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Fig. S1. X-ray diffraction pattern of mesoporous Pt nanoparticles (mPt NPs), and 

cubic phase JCPDS NO. 65-2868.
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Fig. S2. N2 adsorption/desorption isotherm of mPt NPs.
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Fig. S3. High-resolution transmission electron microscope (HRTEM) images of mPt 

NPs (a and b); Transmission electron microscope (TEM) images of mPt@mSiO2 (c) 

and mPt@mSiO2-GdDTPA (d).
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Fig. S4. Dynamic Light Scattering (DLS) of mPt in PBS (a) and mPt in water (b), and 

DLS of mPt@mSiO2-GdDTPA in water (c). The polydispersity index (PDI) of Fig. 

S4 a-c is 0.39, 0.14, and 0.09, respectively. 
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Fig. S5. The linear distribution of Si, Pt, and Gd elements in mPt@mSiO2-GdDTPA.
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Fig. S6. N2 adsorption/desorption isotherms of mPt@mSiO2 and mPt@mSiO2-

GdDTPA (a); Pore size distributions of mPt@mSiO2 and mPt@mSiO2-GdDTPA (b).
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Fig. S7. FTIR spectra of mPt@mSiO2-GdDTPA, mPt@mSiO2, and DTPA. 
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Fig. S8. The thermogravimetric curves of mPt@mSiO2 and mPt@mSiO2-DTPA.
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Fig. S9. The zeta potentials of mPt@SiO2, mPt@SiO2-NH2, mPt@SiO2-DTPA, and 

mPt@SiO2-GdDTPA.
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Table. S1. The zeta potentials of mPt@SiO2, mPt@SiO2-NH2, mPt@SiO2-DTPA, 

and mPt@SiO2-GdDTPA in water.

Sample Zeta potential (mV)

mPt@SiO2 -6.1 ± 1.7                         

mPt@SiO2-NH2 32.2 ± 5.0                         

mPt@SiO2-DTPA -25.5 ± 1.2                        

mPt@SiO2-GdDTPA  41.9 ± 2.0                                    
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Fig. S10. The photos of mPt@mSiO2-GdDTPA in water, PBS (pH = 7.4) and DMEM 

culture solution (a), and after being placed in the lab at room temperature for one 

week (b), and the DLS sizes of mPt@mSiO2-GdDTPA during one week (c).
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Fig. S11. UV-Vis-NIR absorption spectra of different concentrations of mPt@mSiO2-

GdDTPA in water.
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Fig. S12. Temperature changes (a) and infrared thermal images (b) of mPt@mSiO2-

GdDTPA (400 μg/mL) under 808 nm laser irradiation for 10 min with different power 

(1.5 W/cm2, 1 W/cm2, 0.5 W/cm2).
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Fig. S13. Transmission electron microscope (TEM) image of cubic Pt NPs (a); UV-

Vis-NIR absorption spectrum of cubic Pt NPs in water (b); Temperature changes of 

mPt NPs and cubic Pt NPs (60 μg/mL) under 808 nm laser irradiation for 10 min (1.5 

W/cm2) (c).
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Fig. S14. Inverted fluorescence microscope of HeLa cells stained with PI based on 

laser illumination 808 nm laser; control group without laser (a), control group with 

laser (2 W/cm2, 15 min) (b), sample with 1.5 W/cm2 laser for 10 min (c), and 15 min 

(d), and sample with 2 W/cm2 laser for 10 min (e), and 15 min (f).
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Fig. S15. Distributions of Pt in different organs of Kunming mice at 2 and 24 h post-

injection of mPt@mSiO2-GdDTPA NPs (n = 3, dose = 3 mg/mL).
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Fig. S16. In vivo T1-weighted MR images of Kunming mice after the tail intravenous 

injection for varied time periods of spleen at the same dosage (3 mg/mL, 200 μL). 

The coronal images (a) and color mapped images (b). The red and green circles 

represent the region of spleen.


