Supporting information

Double-mesoporous Core-shell Nanosystems based on Platinum Nanoparticles Functionalized with Lanthanide Complexes for *In Vivo* Magnetic Resonance Imaging and Photothermal Therapy

Lei Zhao^a, Xiaoqian Ge^a, Guihua Yan^b, Xiao Wang^c, Pengfei Hu^d, Liyi Shi^a, Otto S. Wolfbeis^e, Hongjie Zhang^c, and Lining Sun^{*a}

^a Research Center of Nano Science and Technology, School of Material Science and Engineering, Shanghai University, Shanghai 200444, China. <u>E-mail:</u> <u>Insun@shu.edu.cn</u>; Tel: +86-21-66137153

^b Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.

^c State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

^d Instrumental Analysis & Research Center, Shanghai University, Shanghai 200444, China.

^e Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany.

Calculation of the photothermal conversion efficiency

As follows, the photothermal conversion efficiency (η) of mPt@mSiO₂-GdDTPA nanosystems was calculated according to the previous reported methods¹.

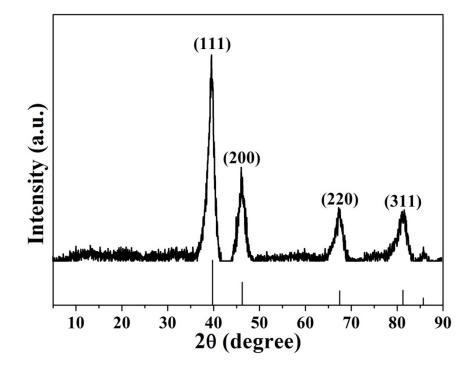
$$\eta = \frac{hs(T_{max} - T_{max,H20})}{I(1 - 10^{-A_{808}})}$$

(1)

Where *h* is heat transfer coefficient, *S* is the surface area of the container, T_{max} is the equilibrium temperature of mPt@mSiO₂-GdDTPA nanosystems, $T_{max}H_{2O}$ is the equilibrium temperature of water. *I* is the output power of 808 nm laser. And A₈₀₈ is the absorption intensity of mPt@mSiO₂-GdDTPA nanosystems at 808 nm. The value of *hS* is derived according to eq 2,3,4:

We introduced a system time constant τ_s and a dimensionless term θ , they were defined as:

$$\theta = \frac{T - T_{surr}}{(T_{max} - T_{surr})}$$
(2)
(3)
 $t = -\tau_s ln\theta$
(4)


hs can be calculated from equation 3 and the unit is mW/°C (with $\tau_s = 188.53$ s, m = 0.44 g, C = 4.2 J/g). Substituting I = 1.5 W, $A_{808} = 0.30$, $T_{max} - T_{max,H_{20}} = 21.2$ °C to equation 1, the photothermal conversion efficiency (η) of mPt@mSiO₂-GdDTPA nanosystems was calculated to be 27%.

References

1. X. Q. Ge, Z. M. Song, L. N. Sun, Y. F. Yang, L. Y. Shi, R. Si, W. Ren, X. E. Qiu, 2

and H. F. Wang, Biomaterials, 2016, 108, 35-43.

X. Ding, C. H. Liow, M. Zhang, R. Huang, C. Li, H. Shen, M. Liu, Y. Zou, N. Gao, Z. Zhang, Y. Li, Q. Wang, S. Li, and J. Jiang, *J. Am. Chem. Soc.*, 2014, 136, 15684–15693.

Fig. S1. X-ray diffraction pattern of mesoporous Pt nanoparticles (mPt NPs), and cubic phase JCPDS NO. 65-2868.

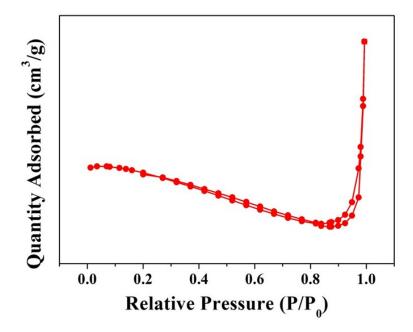
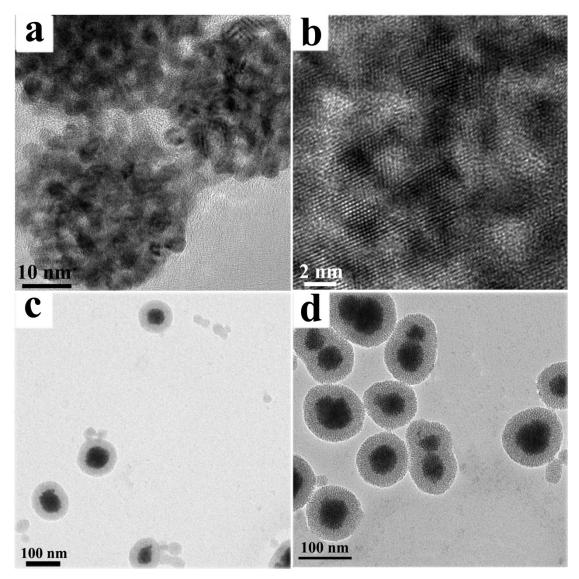
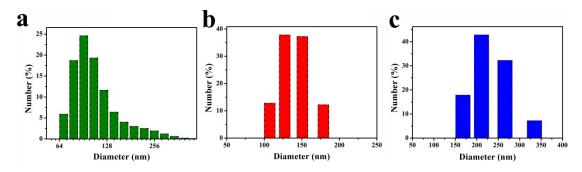




Fig. S2. N_2 adsorption/desorption isotherm of mPt NPs.

Fig. S3. High-resolution transmission electron microscope (HRTEM) images of mPt NPs (a and b); Transmission electron microscope (TEM) images of mPt@mSiO₂ (c) and mPt@mSiO₂-GdDTPA (d).

Fig. S4. Dynamic Light Scattering (DLS) of mPt in PBS (a) and mPt in water (b), and DLS of mPt@mSiO₂-GdDTPA in water (c). The polydispersity index (PDI) of Fig. S4 a-c is 0.39, 0.14, and 0.09, respectively.

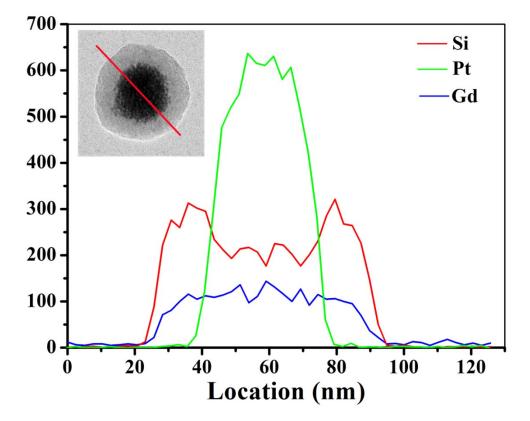
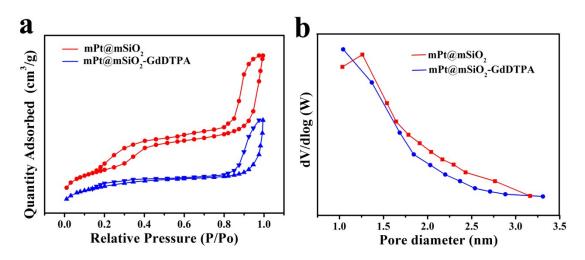



Fig. S5. The linear distribution of Si, Pt, and Gd elements in mPt@mSiO₂-GdDTPA.

Fig. S6. N₂ adsorption/desorption isotherms of mPt@mSiO₂ and mPt@mSiO₂-GdDTPA (a); Pore size distributions of mPt@mSiO₂ and mPt@mSiO₂-GdDTPA (b).

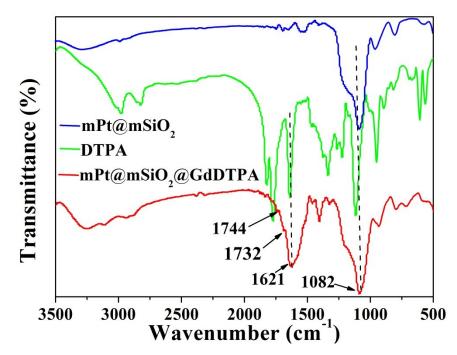


Fig. S7. FTIR spectra of mPt@mSiO₂-GdDTPA, mPt@mSiO₂, and DTPA.

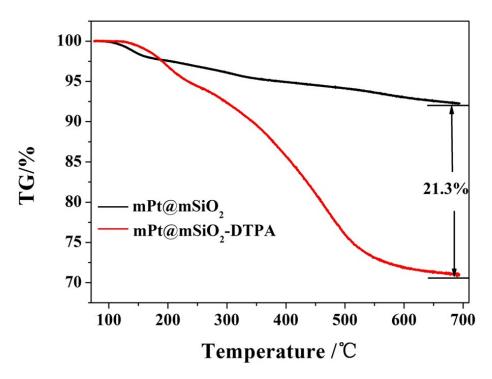
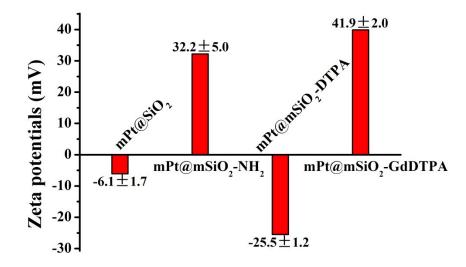
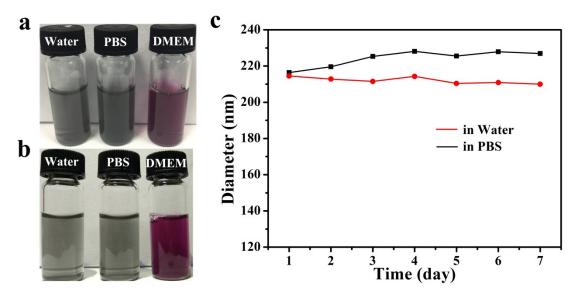
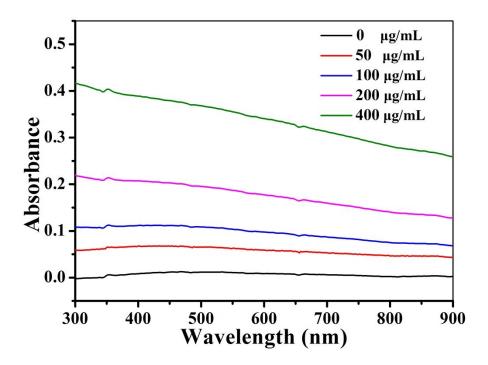


Fig. S8. The thermogravimetric curves of mPt@mSiO₂ and mPt@mSiO₂-DTPA.


Fig. S9. The zeta potentials of mPt@SiO₂, mPt@SiO₂-NH₂, mPt@SiO₂-DTPA, and mPt@SiO₂-GdDTPA.

Sample	Zeta potential (mV)
mPt@SiO ₂	-6.1 ± 1.7
mPt@SiO ₂ -NH ₂	32.2 ± 5.0
mPt@SiO ₂ -DTPA	-25.5 ± 1.2
mPt@SiO ₂ -GdDTPA	41.9 ± 2.0

Table. S1. The zeta potentials of $mPt@SiO_2$, $mPt@SiO_2-NH_2$, $mPt@SiO_2-DTPA$, and $mPt@SiO_2-GdDTPA$ in water.

Fig. S10. The photos of mPt@mSiO₂-GdDTPA in water, PBS (pH = 7.4) and DMEM culture solution (a), and after being placed in the lab at room temperature for one week (b), and the DLS sizes of mPt@mSiO₂-GdDTPA during one week (c).

Fig. S11. UV-Vis-NIR absorption spectra of different concentrations of mPt@mSiO₂-GdDTPA in water.

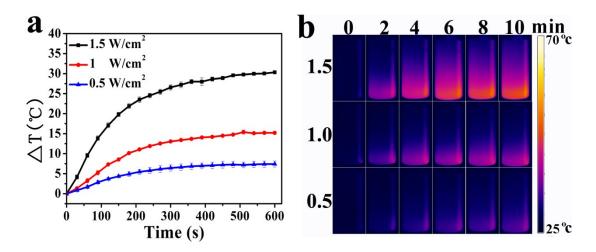
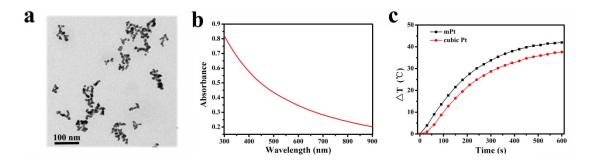
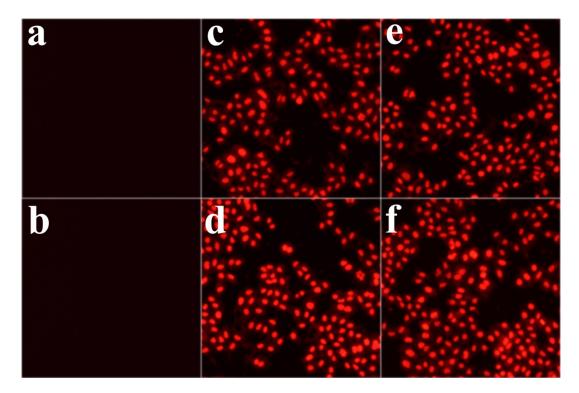
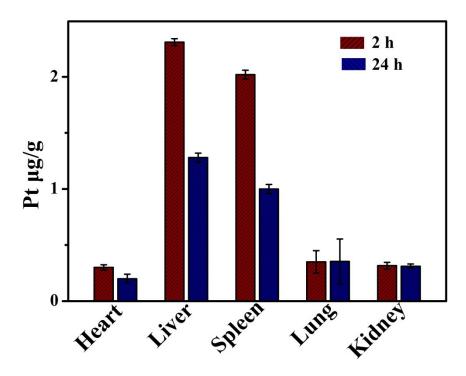


Fig. S12. Temperature changes (a) and infrared thermal images (b) of mPt@mSiO₂-GdDTPA (400 μ g/mL) under 808 nm laser irradiation for 10 min with different power (1.5 W/cm², 1 W/cm², 0.5 W/cm²).

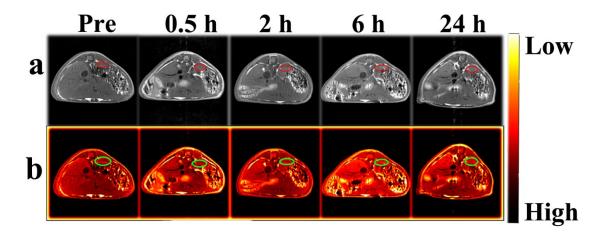

Fig. S13. Transmission electron microscope (TEM) image of cubic Pt NPs (a); UV-Vis-NIR absorption spectrum of cubic Pt NPs in water (b); Temperature changes of mPt NPs and cubic Pt NPs (60 μ g/mL) under 808 nm laser irradiation for 10 min (1.5 W/cm²) (c).

Fig. S14. Inverted fluorescence microscope of HeLa cells stained with PI based on laser illumination 808 nm laser; control group without laser (a), control group with laser (2 W/cm², 15 min) (b), sample with 1.5 W/cm² laser for 10 min (c), and 15 min (d), and sample with 2 W/cm² laser for 10 min (e), and 15 min (f).

Fig. S15. Distributions of Pt in different organs of Kunming mice at 2 and 24 h postinjection of mPt@mSiO₂-GdDTPA NPs (n = 3, dose = 3 mg/mL).

Fig. S16. *In vivo* T_1 -weighted MR images of Kunming mice after the tail intravenous injection for varied time periods of spleen at the same dosage (3 mg/mL, 200 µL). The coronal images (a) and color mapped images (b). The red and green circles represent the region of spleen.