Supporting information

Pd@C core-shell nanoparticles on carbon nanotube as highly stable and selective catalysts for hydrogenation of acetylene to ethylene

Liyun Zhang,^a Yuxiao Ding,^b Kuang-Hsu Wu,^a Yiming Niu,^a Jingjie Luo,^a Xikun Yang,^c Bingsen Zhang^{*a} and Dangsheng Su^{*a}

- ^a Shenyang National Laboratory for Materials Science, Institute of Metal Research,
- Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016 (China).
- E-mail: bszhang@imr.ac.cn, dssu@imr.ac.cn
- ^b Max Plank Institute for Chemical Energy Conversion Mülheim an der Ruhr 101365 (Germany)
- ^c Research Center for Analysis and Measurement, Kunming University of Science and Technology, 304 Xuefu Road, Kunming 650093 (China)

Experiment Section

1. Catalyst synthesis

The synthesis of oxidized Carbon nanotube (CNT) supported Pd catalyst. CNT supported Pd catalyst was prepared by a deposition-precipitation method. First, the pH values of $Pd(NO_3)_2$ solution were adjusted using 0.25 M Na₂CO₃ solution to about 7, and the pH values of CNT solutions were adjusted to about 10 using the 0.25 M Na₂CO₃ solution. Second, the Pd(NO₃)₂ solutions were added to the carbon supports solutions dropwise under stirring at 100 °C. After stirring for 1 h, the mixtures were cooled to room temperature, filtrated and washed. Afterwards, the solids were dried at 100 °C and reduced with H₂ at 200 °C for 2 h. This sample was labeled as Pd/CNT.

Preparation of core-shell Pd@C nanoparticle supported on CNT (Pd@C/CNT). First, Pd/CNT was modified with an nitrogen-containing ionic liquid (IL), 1-ethyl-3-methylimidazolium dicyanamide ([Emim][DCA]), by dispersing Pd/CNT into the IL phase and removing the excess IL with centrifugation. Then the IL modified Pd/CNT was annealed at 350

[°]C for 1h in vacuum, followed by being annealed at higher temperature in Ar atmosphere for 1h. The obtained sample was labeled as Pd@C/CNT.

2. Characterization

Transmission electron microscopy (TEM) and high-angle annular dark-field scanning TEM (HAADF-STEM) images were obtained by using an FEI Tecnai G² F20 microscope equipped with EDAX and HAADF detectors. X-ray diffraction (XRD) patterns of the catalysts were acquired using an X-ray diffractometer (D/MAX-2400) with Cu K_{α} source at a scan rate of 2° min⁻¹. X-ray photoelectron spectroscopy (XPS) spectra were carried out by ESCALAB 250 instrument with Al K_{α} X-rays (1489.6 eV, 150 W, 50.0 eV pass energy). The quasi in situ XPS analyses were performed on a PHI5000 Versaprobe-II Scanning XPS Microprobe system. This system also employed an Al K_{α} X-rays, and the pass energy was 46.95 eV. The binding energy (BE) was relative to the adventitious C1 s line at 284.6 eV.

3. Thermal treatment

In order to investigate the effect of *in situ* formed N-doped carbon layers, a control experiment was performed by annealing the as-prepared catalysts Pd/CNT in tubular furnace under flowing Ar gas conditions at 700 °C for 1h, which is same with the annealing condition of IL-modified Pd/CNT. To further study the thermal stability of Pd nanoparticles (NPs), Pd/CNT and Pd@C/CNT were annealed with an *in situ* heating TEM holder and a tubular furnace under flowing Ar gas conditions, respectively. The *in situ* heating experiments were carried out in vacuum condition by DENSsolutions heating TEM holder, from room temperature (RT) via 350 °C for 1h, 500 °C for 1h to 700 °C for 1h, respectively. Actual metal loadings of the as-prepared catalysts were quantified on a Leeman Laboratories Prodigy inductively coupled plasma mass spectrometry (ICP-MS).

4. Reaction test

The partial hydrogenation of acetylene in excess ethylene was conducted in a fixed-bed flow quartz reactor. The feed gas consisted of 2.99% H_2 , 20.11% C_2H_4 , 0.504% C_2H_2 with He as the balance gas from Dalian Special Gases Co., Ltd.. The total flow rate was kept at 20 ml/min, which was controlled by mass flow controller. The amount of uncoated Pd/CNT catalyst was 5 mg, while the amount of carbon layers coated Pd@C/CNT catalyst was 20 mg. The reaction was conducted in a temperature-programmed mode, ramping at 1 °C/min. The gas composition

from the microreactor outlet was analyzed by online gas chromatography (Agilent Technologies 7890A) equipped with a FID detector.

Acetylene conversion and selectivity to ethylene were calculated as follows:

$$Conversion = \frac{C_2 H_2(feed) - C_2 H_2}{C_2 H_2(feed)} \times 100\%$$

$$Selectivity = (1 - \frac{C_2H_6 + 2 \times C_4}{C_2H_2(feed) - C_2H_2}) \times 100\%$$

C₄ represents butane and dibutene.

Supporting Figures

Figure S1. TEM images of Pd/CNT.

Figure S2. TEM images of Pd@C/CNT.

Figure S3. N 1s XPS core level spectrum of Pd@C/CNT.

Figure S4. TEM images of Pd/CNT-700, which was obtained by annealing Pd/CNT at 700 °C in Ar atmosphere.

Figure S5. TEM images of Pd/CNT (a) and Pd@C/CNT (b) annealed using an *in situ* heating TEM holder at RT, 350 °C for 1h, 500 °C for 1h, and 700 °C for 1h.

Figure S6 C_4 species selectivity as a function of reaction temperature over Pd/CNT and Pd@C/CNT.

Figure S7 (a) TEM image, (b) HAADF-STEM image, (c) HRTEM image, (d) N1s XPS spectrum of used Pd@C/CNT, the inset in (b) is the corresponding histogram of particle size distribution.

Figure S8 Deconvolution results of Pd 3d XPS core level spectra of (a) fresh Pd@C/CNT and (b) used Pd@C/CNT at 150 °C, obtained by quasi-in situ XPS technique.

Supporting Table

	5		0		
	Carbon	Oxygen	Nitrogen	Palladium	Palladium weight
Samples	content [at.	content [at.	content	content [at.	loading [wt. %] ^b
	%] a	%] a	[at. %] ^a	⁰∕₀] a	
Pd/CNT	94.66	4.50	0.39	0.45	2.0
Pd@C/CNT	87.58	6.73	5.41	0.28	1.5

Table S1. Elemental analysis of Pd/CNT and Pd@C/CNT.

^a Determined by XPS; ^b Determined by ICP-MS.