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SUPPLEMENTARY INFORMATION

Section 1: Raman of WSe2
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Fig. S1 – Raman spectrum of WSe2 taken at room temperature with an excitation of 532 

nm. The splitting of the A’1 and E’ peak near 252 cm-1 is consistent with a small amount 

of uniaxial strain in the system.1 For multilayer material, a B1
2g peak is expected at  309 

cm-1, therefore an absence of this peak is consistent with single layer material.2
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Section 2: Differential Reflectivity/Absorption

Fig. S2 – Differential reflectivity taken at 4 K and room temperature. The differential 

reflectivity is defined as the difference between the reflectivity measured with a white light 

source on the sample and the reflectivity measured just off the sample normalized to the 

reflectivity off the sample. Differential reflectivity is proportional to absorption and the A-

exciton and B-exciton absorption features can be clearly seen in these spectra. For the A-

exciton, both the neutral and charged exciton can be resolved at 4 K.
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Section 3: Power Dependence

Fig. S3 – PL spectra of WSe2 collected with cw excitation at 4 K for various powers. The 

left panel shows the raw spectra and the right panel is a summary of the various peak 

intensities as a function of power. Note that we are in the linear regime for all cw excitation. 

Fig. S4 – PL spectra of WSe2 collected with pulsed excitation at 4 K for various powers. 

The left panel shows the raw spectra and the right panel is a summary of the various peak 

intensities as a function of power. Note the limited range of powers where reproducible PL 

is accessible using a pulsed laser. Below an average power of 30 µW, the PL intensity is 
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difficult to observe, above about 90 µW the spectra begin to become permanently affected 

by the pulse.
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Section 4: Alternate fitting schemes 

Fig. S5 – Temperature dependence of the circular polarization of the neutral exciton, X0. 

The symbols are the data and the lines are fits. The solid line is a fit the model described 

in the main text where collisional broadening was considered and the dashed line is a 

fit where simple thermal broadening was used.3

Fig. S6 – Temperature dependence of the circular polarization of the charged exciton, XT. 

The symbols are the data and the lines are fits. The solid line is a fit the model described 

in the main text where collisional broadening was considered and the dashed line is a 

fit where simple thermal broadening was used.3
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Section 5: Raw helicity analyzed PL spectra and fits

Fig. S7 – Raw data and fits of PL spectra taken with cw excitation at low temperature. 

Spectra on the left are analyzed for + and spectra on the right are –. All peaks are fit 

in the + spectra and then only the intensity is allowed to vary for the corresponding 

– spectra.
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Fig. S8 – Raw data and fits of PL spectra taken with pulsed excitation at low temperature. 

Spectra on the left are analyzed for + and spectra on the right are –. All peaks are fit 

in the + spectra and then only the intensity is allowed to vary for the corresponding 

– spectra.
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Fig. S9 – Raw data and fits of PL spectra taken with pulsed excitation at low temperature. 

Spectra on the left are analyzed for + and spectra on the right are –. All peaks are fit 

in the + spectra and then only the intensity is allowed to vary for the corresponding 

– spectra.
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Fig. S10 – Summary of peak intensity vs. Excitation energy resolved for neutral excitons 

and trions using cw or pulsed excitation. Peak intensities are derived from the fits in figures 

S3-S6.

Section 6: Table 1: WSe2 parameters 

A-exciton
Reference VB Splitting CB Splitting X0 XT B-Exciton
This work 0.415 eV — 1.745 eV 1.717 eV 2.16 eV
[4]-expmt 0.425 eV — 1.75 eV 1.72 eV 2.17 eV
[5]-expmt — — 1.742 eV 1.713 eV —
[6]-expmt 0.410 eV — 1.751 eV 1.720 eV 2.16 eV
[7]-expmt — — 1.743 eV 1.708 eV —
[8]-exp 0.480 eV 0.040 eV 1.73 eV 1.70 eV 2.21 eV
[9]-theory 0.466 eV 0.036 eV
[10]-theory 0.490 eV 0.016 eV
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Section 7: Rate equations and polarization 

To compute the polarization under pulsed excitation, we solve the following rate equations:

(S1)

𝑑𝑁𝐾

𝑑𝑡
= 𝑔 ‒ (𝛼 + 𝛽 + 𝐴)𝑁𝐾 + 𝛽𝑁𝐾'

(S2)

𝑑𝑁𝐾'

𝑑𝑡
= 𝑔' ‒ (𝛼 + 𝛽 + 𝐴)𝑁𝐾' + 𝛽𝑁𝐾

Here, NK and NK’ are the populations of excitons in the K and K’ valleys, g and g’ are the 

generation rates,  is the radiative recombination rate, A is the non-radiative recombination 

rate, and  is the spin/valley relaxation rate. We assume the pulse is much shorter than any 

other process and g=g’=0. The solution to these differential equations can be written as

(S3)𝑁𝐾(𝑡) = 𝐶1(𝑒 ‒ (𝛼 + 𝐴)𝑡 + 𝑒 ‒ (𝛼 + 𝐴 + 2𝛽)𝑡) + 𝐶2(𝑒 ‒ (𝛼 + 𝐴)𝑡 ‒ 𝑒 ‒ (𝛼 + 𝐴 + 2𝛽)𝑡)

(S4)
𝑁

𝐾'(𝑡) = 𝐶1(𝑒 ‒ (𝛼 + 𝐴)𝑡 ‒ 𝑒 ‒ (𝛼 + 𝐴 + 2𝛽)𝑡) + 𝐶2(𝑒 ‒ (𝛼 + 𝐴)𝑡 + 𝑒 ‒ (𝛼 + 𝐴 + 2𝛽)𝑡)

with constants C1 and C2. 

At time zero,

(S5)𝑁𝐾(𝑡 = 0) = 2𝐶1

(S6)𝑁𝐾'(𝑡 = 0) = 2𝐶2

and the initial polarization is given by

(S7)
𝑃0 =

𝐶1 ‒ 𝐶2

𝐶1 + 𝐶2

Assuming all excited carriers decay during the time between pulses, the emission 

intensities for each polarization are given by the following integrals:

(S8)
𝐼 + 𝛼 =

∞

∫
0

𝑁𝐾(𝑡)𝑑𝑡 =
𝐶1 + 𝐶2

𝛼 + 𝐴
+

𝐶1 ‒ 𝐶2

𝛼 + 𝐴 + 2𝛽
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(S9)
𝐼 ‒ 𝛼 =

∞

∫
0

𝑁𝐾'(𝑡)𝑑𝑡 =
𝐶1 + 𝐶2

𝛼 + 𝐴
+

𝐶2 ‒ 𝐶1

𝛼 + 𝐴 + 2𝛽

Thus the observed polarization is

(S10)
𝑃𝑐𝑖𝑟𝑐 =

𝐼 + ‒ 𝐼 ‒

𝐼 + + 𝐼 ‒
=  

𝛼 + 𝐴
𝛼 + 𝐴 + 2𝛽

𝐶1 ‒ 𝐶2

𝐶1 + 𝐶2
=

𝑃0

1 + 2𝛽 (𝛼 + 𝐴)
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