Optical polarization of excitons and trions under continuous and pulsed excitation in single layers of WSe₂

A.T. Hanbicki^a, M. Currie^b, G. Kioseoglou^{c,d}, C.S. Hellberg^a, A.L. Friedman^a, and B.T. Jonker^a

 ^a Materials Science & Technology Division, Naval Research Laboratory, Washington, DC 20375
 ^b Optical Sciences Division, Naval Research Laboratory, Washington, DC 20375
 ^c Dept. of Materials Science and Technology, Univ. of Crete, Heraklion Crete, 71003, Greece
 ^dInstitute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion Crete, 71110, Greece

SUPPLEMENTARY INFORMATION

Section 1: Raman of WSe₂

Fig. S1 – Raman spectrum of WSe₂ taken at room temperature with an excitation of 532 nm. The splitting of the A'₁ and E' peak near 252 cm⁻¹ is consistent with a small amount of uniaxial strain in the system.¹ For multilayer material, a B_{2g}^{1} peak is expected at 309 cm⁻¹, therefore an absence of this peak is consistent with single layer material.²

Section 2: Differential Reflectivity/Absorption

Fig. S2 – Differential reflectivity taken at 4 K and room temperature. The differential reflectivity is defined as the difference between the reflectivity measured with a white light source on the sample and the reflectivity measured just off the sample normalized to the reflectivity off the sample. Differential reflectivity is proportional to absorption and the A-exciton and B-exciton absorption features can be clearly seen in these spectra. For the A-exciton, both the neutral and charged exciton can be resolved at 4 K.

Fig. S3 – PL spectra of WSe_2 collected with cw excitation at 4 K for various powers. The left panel shows the raw spectra and the right panel is a summary of the various peak intensities as a function of power. Note that we are in the linear regime for all cw excitation.

Fig. S4 – PL spectra of WSe₂ collected with pulsed excitation at 4 K for various powers. The left panel shows the raw spectra and the right panel is a summary of the various peak intensities as a function of power. Note the limited range of powers where reproducible PL is accessible using a pulsed laser. Below an average power of 30 μ W, the PL intensity is

difficult to observe, above about 90 μW the spectra begin to become permanently affected by the pulse.

Section 4: Alternate fitting schemes

Fig. S5 – Temperature dependence of the circular polarization of the neutral exciton, X⁰. The symbols are the data and the lines are fits. The solid line is a fit the model described in the main text where collisional broadening was considered and the dashed line is a fit where simple thermal broadening was used.³

Fig. S6 – Temperature dependence of the circular polarization of the charged exciton, X^T. The symbols are the data and the lines are fits. The solid line is a fit the model described in the main text where collisional broadening was considered and the dashed line is a fit where simple thermal broadening was used.³

Section 5: Raw helicity analyzed PL spectra and fits

Fig. S7 – Raw data and fits of PL spectra taken with cw excitation at low temperature. Spectra on the left are analyzed for σ + and spectra on the right are σ -. All peaks are fit in the σ + spectra and then only the intensity is allowed to vary for the corresponding σ - spectra.

Fig. S8 – Raw data and fits of PL spectra taken with pulsed excitation at low temperature. Spectra on the left are analyzed for σ + and spectra on the right are σ –. All peaks are fit in the σ + spectra and then only the intensity is allowed to vary for the corresponding σ – spectra.

Fig. S9 – Raw data and fits of PL spectra taken with pulsed excitation at low temperature. Spectra on the left are analyzed for σ + and spectra on the right are σ –. All peaks are fit in the σ + spectra and then only the intensity is allowed to vary for the corresponding σ – spectra.

Fig. S10 – Summary of peak intensity vs. Excitation energy resolved for neutral excitons and trions using cw or pulsed excitation. Peak intensities are derived from the fits in figures S3-S6.

			A-exciton		
Reference	VB Splitting	CB Splitting	X ⁰	XT	B-Exciton
This work	0.415 eV		1.745 eV	1.717 eV	2.16 eV
[4]-expmt	0.425 eV		1.75 eV	1.72 eV	2.17 eV
[5]-expmt			1.742 eV	1.713 eV	
[6]-expmt	0.410 eV		1.751 eV	1.720 eV	2.16 eV
[7]-expmt			1.743 eV	1.708 eV	
[8]-exp	0.480 eV	0.040 eV	1.73 eV	1.70 eV	2.21 eV
[9]-theory	0.466 eV	0.036 eV			
[10]-theory	0.490 eV	0.016 eV			

Section 6: Table 1: WSe₂ parameters

Section 7: Rate equations and polarization

To compute the polarization under pulsed excitation, we solve the following rate equations:

$$\frac{dN_K}{dt} = g - (\alpha + \beta + A)N_K + \beta N_{K'}$$
(S1)

$$\frac{dN_{K'}}{dt} = g' - (\alpha + \beta + A)N_{K'} + \beta N_K$$
(S2)

Here, N_K and $N_{K'}$ are the populations of excitons in the K and K' valleys, g and g' are the generation rates, α is the radiative recombination rate, A is the non-radiative recombination rate, and β is the spin/valley relaxation rate. We assume the pulse is much shorter than any other process and g=g'=0. The solution to these differential equations can be written as

$$N_{K}(t) = C_{1}(e^{-(\alpha+A)t} + e^{-(\alpha+A+2\beta)t}) + C_{2}(e^{-(\alpha+A)t} - e^{-(\alpha+A+2\beta)t})$$
(S3)
$$N_{K}(t) = C_{1}(e^{-(\alpha+A)t} - e^{-(\alpha+A+2\beta)t}) + C_{2}(e^{-(\alpha+A)t} + e^{-(\alpha+A+2\beta)t})$$
(S4)

with constants C_1 and C_2 . At time zero, $N_K(t=0) = 2C_1$ (S5) $N_{K'}(t=0) = 2C_2$ (S6)

and the initial polarization is given by

$$P_0 = \frac{C_1 - C_2}{C_1 + C_2} \tag{S7}$$

Assuming all excited carriers decay during the time between pulses, the emission intensities for each polarization are given by the following integrals:

$$I_{+}/\alpha = \int_{0}^{\infty} N_{K}(t)dt = \frac{C_{1} + C_{2}}{\alpha + A} + \frac{C_{1} - C_{2}}{\alpha + A + 2\beta}$$
(S8)

$$I_{-}/\alpha = \int_{0}^{\infty} N_{K'}(t)dt = \frac{C_{1} + C_{2}}{\alpha + A} + \frac{C_{2} - C_{1}}{\alpha + A + 2\beta}$$
(S9)

Thus the observed polarization is

$$P_{circ} = \frac{I_{+} - I_{-}}{I_{+} + I_{-}} = \frac{\alpha + A - C_{1} - C_{2}}{\alpha + A + 2\beta C_{1} + C_{2}} = \frac{P_{0}}{1 + 2\beta/(\alpha + A)}$$
(S10)

REFERENCES:

- 1H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu and F. M. Peeters, *Phys. Rev. B*, 2013, **87**, 165409.
- 2P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. T. Zahn, S. M. de Vasconcellos and R. Bratschitsch, *Opt. Express*, 2013, **21**, 4908–4916.
- 3S. Konabe, Appl. Phys. Lett., 2016, 109, 73104.
- 4G. Wang, C. Robert, A. Suslu, B. Chen, S. Yang, S. Alamdari, I. C. Gerber, T. Amand, X. Marie, S. Tongay and B. Urbaszek, *Nat. Commun.*, 2015, **6**, 10110.
- 5C. R. Zhu, K. Zhang, M. Glazov, B. Urbaszek, T. Amand, Z. W. Ji, B. L. Liu and X. Marie, *Phys. Rev. B*, 2014, **90**, 161302(R).
- 6G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie and B. Urbaszek, *Phys. Rev. B*, 2014, **90**, 75413.
- 7Y. You, X.-X. Zhang, T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman and T. F. Heinz, *Nat. Phys.*, 2015, **11**, 477–481.
- 8Z. Wang, L. Zhao, K. F. Mak and J. Shan, Nano Lett., 2017, 17, 740-746.
- 9G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao and D. Xiao, *Phys. Rev. B*, 2013, 88, 85433.
- 10 J. P. Echeverry, B. Urbaszek, T. Amand, X. Marie and I. C. Gerber, *Phys. Rev. B*, 2016, **93**, 121107.