Supporting Information

Highly Dispersed Ultra-Small Pd Nanoparticles on Gadolinium Hydroxide Nanorods for Efficient Hydrogenation Reactions

Naseeb Ullah, M. Imran, Kuang Liang, Cheng-Zong Yuan, Akif Zeb, Nan Jiang, Umair Yaqub Qazi, Shafaq Sahar and An-Wu Xu*

Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, PR China

* Address correspondence to anwuxu@ustc.edu.cn (A.W. X.)

Fig. S1 (a) SEM and (b) TEM images of Gd(OH)₃ NRs without loading Pd nanoparticles.

Fig. S2 EDS elemental spectra and elemental compositions of Pd/Gd(OH)₃ sample.

Fig. S3 FTIR spectrum (a) and Raman spectrum (b) of Gd(OH)₃ NRs.

Zeta Potential Distribution

Fig. S4 Zeta potential measurement of bare Gd(OH)₃ NRs.

Fig. S5 (a) UV-Vis absorption spectra of 4-nitrophenol (4-NP) and 4-NP/NaBH₄,

(b) UV-Vis absorption spectra of time-dependent 4-NP reduction over Gd(OH)₃.

Fig. S6 Time dependent UV-Visible spectra of the reduction of 4-nitrophenol over Pd/Gd₂O₃.

Fig. S7 (a) SEM image and (b) XRD pattern of the recycled Pd/Gd(OH)₃ catalyst.

Table S1 Pd weight content in Pd/Gd(OH)3 determined by inductively coupled plasma		
atomic emission spectroscopy (ICP-AES)		

No.	ICP-AES Pd(μg/mL)	Calculated Percentage (%)	
1	0.949	0.93	
2	0.985	0.98	
3	0.921	0.94	
Average		0.951	

Catalyst	t (sec)	Amount of Catalyst (mg)	k (s ⁻¹)	Mol. Ratio NaBH₄/4-NP	Ref.
Pd/Gd(OH) ₃	60	0.2	47 × 10 ⁻³	10	This study
Pd/PPy/TiO ₂	420	1.75	12.2×10^{-3}	7.4	1
Pd/w-Nb ₂ O ₅	480	7.5	19.2 × 10 ⁻³	-	2
h-Pd–CeO ₂	120	1.5	39.3 × 10 ⁻³	2	3
Pd/Fe ₃ O ₄ -Ag	120	1	33 × 10 ⁻³	-	4
Pd-rGO	20	5	-	0.1	5

Table S2 Comparison of 4-NP reduction over Pd NPs supported on different oxide supports

References

- 1) J. M. Chen, X. Lu, X. Bian, G. Nie, C. Zhang and Y. Wei, J. Mater. Chem., 2012, 22, 12723–12730.
- 2) Z. Zhang, F. Wang, C. Chen and T. Zhang, RSC Adv., 2014, 4, 45088-45094.
- 3) C. Du, Y. Guo, Y. Guo, X. Gong and G. Lu, J Mater. Chem. A, 2015, 3, 23230–23239.
- 4) K. Jiang, H. Zhang, Y. Yang and R. Mothes, Chem. Commun., 2011, 47, 11924–11926.
- 5) T. Sun, Z. Zhang, J. Xiao, C. Chen, F. Xiao, S. Wang and Y. Liu, Sci. Rep., 2013, 3, 2527.