Supplementary Material (ESI) for Nanoscale

Electronic Supplementary Information

Determining Molecular Orientation via Single Molecule SERS in a Plasmonic Nano-gap

Addison R L Marshall,^a Jamie Stokes, ^a Francesco. N. Viscomi,^a John E. Proctor,^{a,b} Johannes Gierschner,^c Jean-Sebastien Bouillard,^{*a,d,e} and Ali M Adawi^{*a,d}

^a School of Mathematics and Physical Sciences, Department of Physics and Mathematics,

University of Hull, Cottingham road, HU6 7RX, UK

^b Materials and Physics Research Group, School of Computing, Science and Engineering, University of Salford, Manchester M5 4WT, United Kingdom

^c Madrid Institute for Advanced Studies - IMDEA Nanoscience, Calle Faraday 9, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain

^d G. W. Gray Centre for Advanced Materials, University of Hull, Cottingham road, HU6 7RX, UK

^e Department of Physics, King's College London, Strand, London, WC2R 2LS

*a.adawi@hull.ac.uk and j.bouillard@hull.ac.uk

Figure S1: The calculated scattering and absorption cross section spectra vs. wavelength for a 5 nm nano-gap width for different particle sizes.

Figure S2: The calculated field enhancements associated with a 5 nm nano-gap using a particle size of 60 nm (a) 118 nm (b) and 200 nm (b) and a 100 nm extended silver film. The x-y field enhancements were taken from the centre of the nano-gap.

Figure S3: The calculated effective figure of merit $\langle G(\lambda) \rangle$ for a 5 nm nano-gap of different particle size 60 nm, 118 nm and 200 nm as a function of Raman shift. In each case the Raman shift is calculated relative to the nano-gap wavelength peak maximum.

Figure S4: DFT-calculated Raman spectrum under off resonant condition.

Figure S5: Calculated atomic displacements for selected modes

Table S1 : dipole moment direction for the measured Raman modes in Figure 5.				
Measured	Calculated	Dipole moment in α – β	Dipole moment in α – γ plane	
Frequency (cm ⁻¹)	Frequency (cm ⁻¹)	plane		
621	628	$ \begin{array}{c} & & \\ & & \\ & & \\ \alpha \end{array} \begin{array}{c} & \\ & \\ & \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \end{array} \right) $	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ \alpha \end{array} $	
778	781	T.		
1193	1205	I.		
1237	1220	T,		

1318	1336	↓ ↓ ↓	
1367	1382	J.	
1427	1427	Į,	
1511	1514	T,	
1583	1550	Į,	

1652 164		
----------	--	--