Homoepitaxial growth on semiconductor nanocrystals for efficient and stable visible-light photocatalytic hydrogen evolution

Zheng Fang, ^{a,b} Jiajing Zhou, ^b Yimin Sun, ^c Jinhua Hu, ^a Li Liang, ^a Rong Xu, ^{b*}
Hongwei Duan^{b*}

- ^a State Key Laboratory of Food Science and Technology, School of Food Science and Technology,

 Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
- ^b School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
- ^c School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, People's Republic of China.

Email: hduan@ntu.edu.sg; rxu@ntu.edu.sg;

Figure S1. TEM (A), XRD pattern (B) and UV-vis spectra (C) of CdS NCs by decomposition of Cd(DDTC)₂ at 140 °C for 30 minutes in the presence of OAm and

Fig. S2. TEM images of $CdS_{3.6 \text{ nm}}$ core (A) and $CdS/ZnS_{2ML}(B)$, $CdS/ZnS_{4ML}(C)$, and XRD pattern for CdS/ZnS core/shell NCs by varing the shell thickness from 2 ML to 4 ML (D).

Fig. S3. (A) The UV-vis and fluorescence spectra of CdS nanocrystals with different particle size. (B) The H_2 production rate of same size CdS, CdS_{homo} NCs and CdS NRs directly decomposed from $Cd(DDTC)_2$.

Table S1 Visible-Light-Driven CdS based photocatalysts for hydrogen evolution

photocatalyst	mass (g)	light source	incident light	aqueous reaction solution	activity (μmol·h ⁻¹ ·g ⁻¹)	QE (%, 420 nm)	Ref.
Pt/CdS	0.3	300 W Xe	> 420 nm	0.5 M Na ₂ S + 0.5 M Na ₂ SO ₃	16	51	1
Pd/CdS					12.73	40	
Pt-Pd/CdS					16.5	53	
PdS/CdS					19.96	64	
Pt-PdS/CdS					29.23	93	
Pt/CdS	0.15	300 W Xe	≥420 nm	0.35 M Na ₂ SO ₃ + 0.25 M Na ₂ S	27.33	60.34	2
NiS/CdS	0.3	300 W Xe	≥420 nm	0.25 M Na ₂ S+0.35 M Na ₂ SO ₃	7.26	51.3	3
Pt-CdS	0.1	300 W Xe lamp	≥420 nm	20 vol% of L- (+)-lactic acid	29.63	70.0	our work

Fig. S4. The stability of H_2 evolution under 7 cycles of irradiation, the system was evacuated after each cycle of irradiation, and L-(+)-lactic acid was supplemented after 4 cycles of irradiation.

References

- H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li, J. Catal., 2009, 266, 165-168.
- 2 N. Bao, L. Shen, T. Takata, K. Domen, Chem. Mater., 2007, 20, 110-117.
- 3 W. Zhang, Y. Wang, Z. Wang, Z. Zhongb, R. Xu. Chem. Commun., 2010, **46**, 7631-7633