Homoepitaxial growth on semiconductor nanocrystals for efficient and stable visible-light photocatalytic hydrogen evolution Zheng Fang, ^{a,b} Jiajing Zhou, ^b Yimin Sun, ^c Jinhua Hu, ^a Li Liang, ^a Rong Xu, ^{b*} Hongwei Duan^{b*} - ^a State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China - ^b School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 - ^c School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei 430073, People's Republic of China. Email: hduan@ntu.edu.sg; rxu@ntu.edu.sg; **Figure S1.** TEM (A), XRD pattern (B) and UV-vis spectra (C) of CdS NCs by decomposition of Cd(DDTC)₂ at 140 °C for 30 minutes in the presence of OAm and **Fig. S2**. TEM images of $CdS_{3.6 \text{ nm}}$ core (A) and $CdS/ZnS_{2ML}(B)$, $CdS/ZnS_{4ML}(C)$, and XRD pattern for CdS/ZnS core/shell NCs by varing the shell thickness from 2 ML to 4 ML (D). Fig. S3. (A) The UV-vis and fluorescence spectra of CdS nanocrystals with different particle size. (B) The H_2 production rate of same size CdS, CdS_{homo} NCs and CdS NRs directly decomposed from $Cd(DDTC)_2$. Table S1 Visible-Light-Driven CdS based photocatalysts for hydrogen evolution | photocatalyst | mass (g) | light
source | incident
light | aqueous
reaction
solution | activity
(μmol·h ⁻¹ ·g ⁻¹) | QE (%,
420 nm) | Ref. | |---------------|----------|------------------|-------------------|---|--|-------------------|----------| | Pt/CdS | 0.3 | 300 W Xe | > 420 nm | 0.5 M Na ₂ S +
0.5 M Na ₂ SO ₃ | 16 | 51 | 1 | | Pd/CdS | | | | | 12.73 | 40 | | | Pt-Pd/CdS | | | | | 16.5 | 53 | | | PdS/CdS | | | | | 19.96 | 64 | | | Pt-PdS/CdS | | | | | 29.23 | 93 | | | Pt/CdS | 0.15 | 300 W Xe | ≥420 nm | 0.35 M
Na ₂ SO ₃ + 0.25
M Na ₂ S | 27.33 | 60.34 | 2 | | NiS/CdS | 0.3 | 300 W Xe | ≥420 nm | 0.25 M
Na ₂ S+0.35 M
Na ₂ SO ₃ | 7.26 | 51.3 | 3 | | Pt-CdS | 0.1 | 300 W Xe
lamp | ≥420 nm | 20 vol% of L-
(+)-lactic acid | 29.63 | 70.0 | our work | Fig. S4. The stability of H_2 evolution under 7 cycles of irradiation, the system was evacuated after each cycle of irradiation, and L-(+)-lactic acid was supplemented after 4 cycles of irradiation. ## References - H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, C. Li, J. Catal., 2009, 266, 165-168. - 2 N. Bao, L. Shen, T. Takata, K. Domen, Chem. Mater., 2007, 20, 110-117. - 3 W. Zhang, Y. Wang, Z. Wang, Z. Zhongb, R. Xu. Chem. Commun., 2010, **46**, 7631-7633