Supplementary information for

Relativistic DFT Investigation of Electronic Structure Effects Arising from Doping the Au₂₅ Nanocluster with Transition Metals

Fahri Alkan^a, Alvaro Muñoz-Castro^{b,c}, Christine M. Aikens^{a,*}

- a) Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
- b) Grupo de Química Inorgánica y Materiales Moleculares, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile
- c) Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Av. Republica 275, Santiago, Chile

*cmaikens@ksu.edu; 1-785-532-0954

Population analysis of low-lying molecular orbitals in different isomers of MAu₂₄-³

For a better understanding of the nature of molecular orbitals (MOs), the doped species and the resulting contributions to MOs are divided into the following fragments; a) the dopant atom (M) b) Au_{12} or Au_{13} core and c) the ligands. These fragments are illustrated in Figure S1 for the case of isomer II. In this interaction picture, low-lying energy levels are originated from the mixing of; atomic d orbitals of dopant, P and D super-atomic orbitals of Au_{12} (or Au_{13}) core, and the orbitals that are localized on the ligand shell. Table S1 shows the contribution of each fragment orbitals to the MOs for different isomers and for different dopants. The contributions from dopant s or p orbitals are quite small, (less than 1% in most cases) and are not tabulated in Table S1.

Figure S1. An example of the fragments employed in the population analysis of doped clusters for the isomer II structure. Fragments in this case consist of the dopant atom, Au_{12}^{+4} core and $Au_{12}(SH)_{18}^{-6}$ ligand shell. Note that in the case of isomer III, the core fragment becomes Au_{13}^{+5} while the ligand fragment is $Au_{11}(SH)_{18}^{-7}$.

Isomer I							
MO	Dopant	Au_{12}	2 core	Au d +	Labal		
MO	d	1P	1D	thiolate	Label		
CoAu ₂₄ ⁻³							
HOMO-7	0%	55%	0%	28%	$1P^6$		
HOMO-6	0%	54%	0%	30%	$1P^6$		
HOMO-5	0%	54%	0%	27%	$1P^6$		
HOMO-4	57%	0%	20%	5%	nd^{10}		
HOMO-3	58%	0%	19%	5%	nd^{10}		
HOMO-2	68%	0%	13%	3%	nd^{10}		
HOMO-1	60%	0%	17%	5%	nd^{10}		
HOMO	61%	0%	16%	0%	nd^{10}		
LUMO	23%	0%	41%	22%	$1D^{10}$		
LUMO-1	23%	0%	40%	20%	$1D^{10}$		
RhAu ₂₄ -3							
HOMO-7	48%	0%	14%	5%	nd^{10}		
HOMO-6	47%	0%	14%	6%	nd^{10}		
HOMO-5	47%	0%	14%	6%	nd^{10}		
HOMO-4	32%	0%	21%	16%	nd^{10}		
HOMO-3	32%	0%	21%	16%	nd^{10}		
HOMO-2	0%	58%	0%	32%	$1P^6$		
HOMO-1	0%	58%	0%	32%	$1P^6$		
HOMO	0%	55%	0%	30%	$1P^6$		
LUMO	16%	0%	41%	24%	$1D^{10}$		
LUMO-1	14%	0%	41%	24%	$1D^{10}$		
IrAu ₂₄ ⁻³							
HOMO-7	42%	0%	18%	7%	nd^{10}		
HOMO-6	42%	0%	17%	9%	nd^{10}		
HOMO-5	41%	0%	16%	7%	nd^{10}		
HOMO-4	29%	0%	23%	17%	nd^{10}		
HOMO-3	29%	0%	24%	15%	nd ¹⁰		
HOMO-2	0%	53%	0%	29%	$1P^6$		
HOMO-1	0%	53%	0%	30%	$1P^6$		
HOMO	0%	52%	0%	29%	$1P^6$		
LUMO	17%	0%	36%	19%	$1D_{10}^{10}$		
LUMO-1	16%	0%	35%	27%	$1D^{10}$		
Isomer II							
CoAu ₂₄ -3							
HOMO-7	17%	38%	2%	19%	$1P^{o}$		
HOMO-6	7%	46%	1%	24%	$1P^{\circ}$		
HOMO-5	5%	45%	0%	21%	$1P_{10}^{o}$		
HOMO-4	43%	7%	12%	7%	nd ¹⁰		

 Table S1. Coefficients of Fragment Orbitals for the Low-Lying MOs

 of Doped Systems

HOMO-3	73%	0%	4%	0%	nd^{10}
HOMO-2	37%	12%	18%	6%	nd^{10}
HOMO-1	73%	3%	3%	0%	nd^{10}
HOMO	75%	0%	1%	0%	nd^{10}
LUMO	20%	1%	36%	16%	$1D^{10}$
LUMO-1	14%	0%	42%	18%	$1D^{10}$
$RhAu_{24}^{-3}$					
HOMO-7	14%	31%	5%	18%	$1P^6$
HOMO-6	22%	40%	1%	15%	$1P^6$
HOMO-5	5%	44%	0%	28%	$1P^6$
HOMO-4	67%	1%	2%	1%	nd^{10}
HOMO-3	56%	6%	4%	6%	nd^{10}
HOMO-2	54%	10%	1%	6%	nd^{10}
HOMO-1	57%	8%	2%	5%	nd^{10}
HOMO	22%	14%	21%	14%	nd^{10}
LUMO	6%	0%	48%	24%	$1D^{10}$
LUMO-1	12%	2%	38%	24%	$1D^{10}$
IrAu ₂₄ ⁻³					
HOMO-7	20%	25%	8%	13%	$1P^6$
HOMO-6	25%	32%	1%	13%	$1P^6$
HOMO-5	11%	36%	0%	24%	$1P^{6}$
HOMO-4	52%	1%	2%	0%	nd_{10}^{10}
HOMO-3	45%	13%	5%	10%	nd_{10}^{10}
HOMO-2	54%	5%	0%	5%	nd_{10}^{10}
HOMO-1	44%	15%	2%	9%	nd_{10}^{10}
HOMO	11%	20%	26%	16%	nd_{10}^{10}
LUMO	8%	2%	38%	23%	$1D_{10}^{10}$
LUMO-1	9%	2%	36%	25%	$1D^{10}$
		Isomer	·III		
$RhAu_{24}^{-3}$					
HOMO-7	10%	33%	0%	24%	$1P^6$
HOMO-6	11%	45%	0%	20%	$1P^{6}$
HOMO-5	2%	55%	0%	22%	$1P^{6}$
HOMO-4	78%	2%	0%	1%	nd_{10}^{10}
HOMO-3	22%	12%	25%	11%	nd_{10}^{10}
HOMO-2	60%	3%	2%	9%	nd_{10}^{10}
HOMO-1	57%	3%	3%	9%	nd_{10}^{10}
HOMO	80%	0%	0%	1%	nd_{10}^{10}
LUMO	5%	0%	54%	21%	$1D_{10}^{10}$
LUMO-1	11%	1%	38%	20%	$1D^{10}$
IrAu ₂₄ -3					
HOMO-7	8%	25%	0%	29%	$1P_{c}^{o}$
HOMO-6	17%	39%	0%	20%	$1P_{2}^{o}$
HOMO-5	3%	54%	0%	21%	$1P_{10}^{o}$
HOMO-4	69%	6%	0%	1%	nd ¹⁰

HOMO-3	12%	22%	19%	14%	nd^{10}
HOMO-2	56%	6%	1%	8%	nd^{10}
HOMO-1	49%	0%	8%	18%	nd^{10}
HOMO	78%	0%	2%	2%	nd^{10}
LUMO	8%	0%	53%	18%	$1D^{10}$
LUMO-1	8%	1%	40%	18%	$1D^{10}$

Strengths and the	he MO pairs v	with the Larg	est Contribu	Strengths and the MO pairs with the Largest Contributions.						
Excited State	Oscillator	Occupied	Virtual	Deals						
Energy (eV)	(eV) Strength Level		Level	reak						
CoAu ₂₄ ⁻³										
1.51	0.015	$1P^6$	$1D^4$	А						
2.09	0.006	nd^{10}	Au d +							
			thiolate	В						
2.11	0.018	$1P^6$	$1D^6$							
2.45	0.045	Au d +	$1D^4$							
		thiolate								
2.47	0.043	$1P^6$	Au d +	C						
			thiolate	C						
2.50	0.029	$1P^6$	Au d +							
			thiolate							
2.77	0.018	nd^{10}	Au d +							
			thiolate							
2.80	0.023	Au d +	$1D^4$	р						
		thiolate		D						
2.91	0.021	Au d +	$1D^{6}$							
		thiolate								
$RhAu_{24}^{-3}$										
1.65	0.016	1P ⁶	1D ⁴	А						
2.14	0.016	$1P^6$	$1D^6$	р						
2.22	0.035	1P ⁶	$1D^{6}$	D						
2.64	0.042	nd_{10}^{10}	1F	C						
2.67	0.024	nd ¹⁰	1F	C						
2.93	0.035	Au d +	$1D^4$							
		thiolate	,	р						
2.94	0.030	Au d +	1D ⁶	D						
2		thiolate								
IrAu ₂₄ -3										
1.92	0.012	1P ⁶	$1D^4$	А						
2.34	0.013	1P ⁶	1D ⁶	R						
2.40	0.020	1P ⁶	1D°	U						
2.63	0.026	nd ¹⁰	1F	C						
2.67	0.011	nd ¹⁰	1F	C						
2.76	0.017	Au d +	$1D^4$							
		thiolate		р						
2.84	0.019	nd ¹⁰	1F	D						
2.89	0.020	nd ¹⁰	1F							

Table S2. Selected Excited States That Contribute to theSpectra of the Doped Species, Their Energies, OscillatorStrengths and the MO pairs with the Largest Contributions.

	Relative	Relative Energies (kcal/mol) ^a			HOMO-LUMO gap (eV)		
System	Isomer I	Isomer II	Isomer III	Isomer I	Isomer II	Isomer III	
q=-3							
CoAu ₂₄	0.0(0.0)	39.1(39.0)	-	1.25(1.33)	0.24(0.25)	-	
RhAu ₂₄	0.0(0.0)	34.6(35.9)	41.4(43.3)	1.40(1.55)	0.67(0.71)	0.36(0.61)	
IrAu ₂₄	0.0(0.0)	49.5(50.1)	57.9(59.1)	1.64(1.84)	0.58(0.63)	0.37(0.49)	

Table S3. Relative isomer energies and HOMO-LUMO gaps for different isomers of MAu_{24}^{q} systems calculated with SOC. Values in parentheses are results for the scalar-only case.