Supplementary Information

Improved response time of flexible microelectromechanical sensors employing eco-friendly nanomaterials

Shicheng Fan,^a Li Dan,^b Lingju Meng,^a Wei Zheng,^b Anastasia Elias,^b and Xihua Wang^{*a}

a. Department of Electrical and Computer Engineering, University of Alberta, T6G 2V4, Edmonton, Canada.
b. Department of Chemical and Material Engineering, University of Alberta, T6G 1H9, Edmonton, Canada.

* Corresponding author: xihua@ualberta.ca

Measurement setup illustration:

Figure S1 Measurement setup illustration of digital MEM sensors.

Finite element method (FEM) simulation of MEM sensors with different CNC/PDMS ratios and heights:

Figure S2 FEM simulation of MEM sensors with different CNC/PDMS ratios and pier heights. From left to right, the 3 columns represent 3 different CNC/PDMS ratios. From top to bottom, the

3 rows represent sensors with 3 different pier heights. The colors on simulated pier heights represent displacement when 50 Pa pressure is applied on top of the bridge structure.