Supporting Information

Difference in hot carrier cooling rate between Langmuir-Blodgett and drop cast PbS QDs films due to strong electron-phonon coupling

Wenkai Cao^a; Yuan Lin^a, Rob Patterson^a, Xiaoming Wen^a, Patrick C. Tapping^c, Tak Kee^c, Binesh Puthen Veetil^a, Pengfei Zhang^a, Zewen Zhang^a, Qiuyang Zhang^a, Peter Reece^b, Stephen Bremner^a, Santosh Shrestha^a, Gavin Conibeer^a, Shujuan Huang^{a*}

^aSchool of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney NSW 2052, Australia

^bSchool of Physics, UNSW Sydney, Sydney NSW 2052, Australia

°Department of Chemistry, The University of Adelaide, South Australia 5005, Australia

Figure S1. Size distribution histogram plots of 4 nm and 5 nm PbS QDs estimated from TEM images.

Figure S2. Distribution histograms of the

inter-dot distance in the QD LB films and drop cast films.