Electronic Supporting information for:

Identifying DNA Mismatches at Single-Nucleotide Resolution by Probing Individual Surface Potentials of DNA-Capped

Nanoparticles

Hyungbeen Lee, ‡^a Sang Won Lee, ‡^b Gyudo Lee, ‡^{b,c,} Wonseok Lee, ^a Kihwan Nam, ^d Jeong Hoon Lee, ^e Kyo Seon Hwang, ^f Jaemoon Yang, ^g Hyeyoung Lee, ^h Sangsig Kim, ⁱ Sang Woo Lee, ^a and Dae Sung Yoon*^b

^a Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea

^b School of Biomedical Engineering, Korea University, Seoul 02841, Korea

^c School of Public Health, Harvard University, Boston, Massachusetts 02115, United States

^d Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea

^e Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Korea

^fDepartment of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02447, Korea

^g Department of Radiology, Yonsei University College of Medicine, Seoul 03722, Korea

^h Department of Biomedical Laboratory Science, Yonsei University, Wonju 26493, Korea

¹Department of Electrical Engineering, Korea University, Seoul 02841, Korea

[‡]These authors contributed equally to this work.

Corresponding author E-mail address: dsyoon@korea.ac.kr

Fig. S1 SEM and AFM analysis of the bare GNP (~100 nm in diameter). (a) SEM image of GNP (100 nm in diameter), (b) An AFM topography image (scan size: $10 \ \mu m \times 10 \ \mu m$) and (c) the corresponding height distribution of the bare GNP, extracted from the topography image (b).

Fig. S2 A schematic describing our experimental procedure. (a) The bare GNP (100 nm, Sigma-Aldrich) was diluted to 0.1 mM in PBS with $3.45 - 4.22 \times 10^9$ particles in 1 mL. (b) The *p*DNAs (16 mer) are immobilized on the bare GNP, which is called *p*DCNP. (c) The *t*DNAs with 1 to 5 nucleotide mismatches are hybridized with the *p*DCNP. (d) Topography and surface potential images of each sample are obtained by KPFM.

Fig. S3 Optimization of KPFM imaging of the bare GNP. The measured surface potentials of the bare GNP with different lift scan heights (a) and with different drive amplitudes (b).

Fig. S4 Surface potential images of the *p*DCNPs with respect to four different scanning speeds. The surface potential mapping images by KPFM (scan size: $10 \ \mu\text{m} \times 10 \ \mu\text{m}$) were obtained at the scan speeds of $10 \ \mu\text{m/s}$ (a), $30 \ \mu\text{m/s}$ (b), $50 \ \mu\text{m/s}$ (c), and $70 \ \mu\text{m/s}$ (d), respectively. (e) Cross-sectional views of the surface potentials measured at the different scan speeds, obtained by performing line scans (black dot line) in each image.

Fig. S5 Top view 3D surface potential images of all the samples. (a-i) 3D images $(10 \times 10 \ \mu\text{m}^2)$ of all the samples with top-view point: (a) the bare GNP (100 nm), (b) the *p*DCNP, (c) the *p*-*c*DCNP, (d) the *p*-*nc*DCNP, (e) the *p*- χ_1 DCNP, (f) the *p*- χ_2 DCNP, (g) the *p*- χ_3 DCNP, (h) the *p*- χ_4 DCNP, and (i) the *p*- χ_5 DCNPs.

Fig. S6 Comparison between the equilibrium constants for DNA hybridization (K_H). (a) Relative equilibrium constant of each case in comparison with the K_H of the *p*-*c*DNA, (b) Normalized decrement (between two neighboring cases) of the equilibrium constants for DNA hybridization of 1 to 5 mutations. For instance, normalized decrement between *p*-*a*DNA and *p*-*b*DNA is given by:

$$\delta K_{H}^{a,b} \left(\%\right) = \frac{K_{H}^{a} - K_{H}^{b}}{K_{H}^{a}} \times 100$$

Each difference between two neighboring values of the K_H was at least 75%, implying that this system has a capacity for discriminating between any two similar mutations and performing gene analysis with high accuracy and reliability.

Fig. S7 KPFM analyses at lower concentrations of *t*DNA (7.68 nM and 768 pM). (a-f) Topography and surface potential images ($10 \times 10 \ \mu\text{m}^2$) of the DCNPs: (a) *p*-*c*DCNP at 7.68 nM cDNA, (b) *p*- χ_1 DCNP at 7.68 nM χ_1 DNA, (c) *p*-*nc*DCNP at 7.68 nM *nc*DNA, (d) *p*-*c*DCNP at 768 pM *c*DNA, (e) *p*- χ_1 DCNP at 768 pM χ_1 DNA, (f) *p*-*nc*DCNP at 768 pM *nc*DNA, respectively.

Fig. S8 Population ratio (P_u/P_h) of the unbound to the hybridized DCNPs with concentration of tDNA

	ϕ_{pDNA}	Φ	Φ_{ideal} (=2 ϕ_{pDNA})	ϕ'_{pDNA}	ϕ'_{p-tDNA}	K_H
<i>p-c</i> DNA	0.743	1.455	1.490	0.035	1.420	1502.029
$p-\chi_l$ DNA	0.743	1.410	1.490	0.080	1.330	201.089
$p-\chi_2$ DNA	0.743	1.334	1.490	0.156	1.177	51.262
<i>p</i> -χ₃DNA	0.743	1.156	1.490	0.334	0.822	7.612
<i>p</i> -χ₄DNA	0.743	0.912	1.490	0.578	0.335	1.031
<i>p</i> -χ ₅ DNA	0.743	0.748	1.490	0.742	0.006	0.019
<i>p-nc</i> DNA	0.743	0.747	1.490	0.743	0.005	0.017

Table S1. Summary of the surface potentials of the *p*-*t*DCNPs, and the calculated equilibrium constants for DNA hybridization (K_H). Table shows the results obtained from the average surface potentials of each *p*-*t*DCNP case (that is, from the *p*-*c*DNA to the *p*-*nc*DNA). ϕ_{pDNA} indicates the measured surface potential of the *p*DCNPs. Φ is a total average potential of each *p*-*t*DCNP case, measured by KPFM, and Φ_{ideal} is an ideal case of the Φ which has double charge of the *p*DNA surface potential. After hybridization, ϕ'_{pDNA} and ϕ'_{dsDNA} reflect the surface potentials of the remaining *p*DNA and the dsDNA (hybridized *p*-*t*DNA). Based on the model (Eq. 3) we calculated the K_H between the *p*DNA and the *t*DNA.

		<i>p-c</i> DNA		$p-\chi_I$ DNA		<i>p-nc</i> DNA	
		Averag	Probability	Average	Probability	Average	Probability
		$e(\Delta V)$	(%)	(ΔV)	(%)	$ (\Delta V)$	(%)
76.8 nM	ϕ_{ssDNA}	1.455	100.000	1.410	100.000	-	-
	ϕ_{dsDNA}	-	-	-	-	0.743	100.000
7.68 nM	ϕ_{ssDNA}	1.398	76.171	1.320	64.151	-	-
	ϕ_{dsDNA}	0.760	26.829	0.772	35.849	0.741	100.000
768 pM	ϕ_{ssDNA}	1.325	51.667	1.335	18.667	-	-
	ϕ_{dsDNA}	0.765	48.333	0.762	81.333	0.752	100.000

Table S2. Summary of the bimodal distributions in surface potential of the DCNPs at low *t*DNA concentration, and their probability between two different states of each DCNP case. Herein, the ϕ_{ssDNA} represents an average surface potential of the *p*DCNP left not hybridized. The ϕ_{dsDNA} is an average surface potential of the *p*-*t*DCNP, the hybridization of which is completed.