Electronic Supplementary Information

RGD-QD-MoS₂ nanosheets for targeted fluorescent imaging and

photothermal therapy of cancer

Yuqian Zhang,^a Weijun Xiu,^a Yiting Sun,^a Di Zhu,^a Qi Zhang,^a Lihui Yuwen,^{*,a} Lixing Weng,^b Zhaogang Teng,^c and Lianhui Wang^{*,a}

a Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

b School of Geography and Biological Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China.

c Department of Medical Imaging, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, China.

* Authors to whom correspondence should be addressed;

Tel.: +86 25 85866333; Fax: +86 25 85866396.

 $\label{eq:constraint} \textit{E-mail: iamlhyuwen@njupt.edu.cn; iamlhwang@njupt.edu.cn}$

S1. Characterization

- S2. Morphology of QDs, MoS₂ NSs, BPM NSs and RGD-QD-MoS₂ NSs
- S3. XPS Spectra of RGD-QD-MoS₂ NSs
- S4. Hydrodynamic Sizes and Zeta Potentials of MoS₂ NS, BPM NSs, and RGD-QD-MoS₂ NSs
- S5. The Loading Efficiency of QDs on BPM NSs
- S6. The Photoluminescence Quantum Yield (PLQY) of QDs and RGD-QD-MoS₂ NSs
- S7. Cytotoxicity of MoS₂ NSs, BPM NSs and QDs
- S8. In Vitro Fluorescent Imaging
- **S9.** Flow Cytometry Analysis
- S10. In Vitro Photothermal Therapy
- S11. Serum Stability of RGD-QD-MoS₂ NSs
- S12. Biodistribution of RGD-QD-MoS₂ NSs and QD-MoS₂ NSs
- **S13. Tumor Temperature Evolution Curves**
- S14. In Vivo Toxicity of RGD-QD-MoS₂ NSs

S1. Characterization

Morphology of the nanomaterials was characterized by transmission electron microscopy (TEM, Hitachi HT-7700, 120 kV) and high resolution TEM (HRTEM, Tecnai G2 F20 S-Twin electron microscope, 200 kV). Atomic force microscopy (AFM, BRUKER Dimension Icon with ScanAsyst) was used to characterize the thickness of MoS₂ NSs, BPM NSs and RGD-QD-MoS₂ NSs. Photoluminescence spectra of QDs and RGD-QD-MoS₂ NSs were recorded with a Shimadzu RF-5301 PC fluorescence spectrophotometer. UV-Vis-NIR absorption spectra was obtained from a Shimadzu UV-3600 spectrophotometer. Infrared spectra was recorded using a PerkinElmer FT-IR spectrometer. X-ray photoelectron spectroscopy (XPS) was performed on PHI 5000 VersaProbe with an Al Kα X-ray source. A ZetaPALS Potential Analyzer (Brookhaven) was used to determine the hydrodynamic size and Zeta potential of the nanosheets.

Fig. S1. Large area TEM images of (a) MoS₂ NSs and (b) BPM NSs; Large area AFM images of (c) MoS₂ NSs and (d) BPM NSs.

Fig. S2. (a) TEM image of QD580; (b) HRTEM image of MoS₂ NSs; (c) HRTEM image of RGD-QD580-MoS₂ NSs.

S3. XPS Spectra of RGD-QD-MoS₂ NSs

Fig. S3. XPS spectra of RGD-QD-MoS₂ NSs.

S4. Hydrodynamic Sizes and Zeta Potentials of MoS₂ NS, BPM NSs, and RGD-QD-MoS₂ NSs

Fig. S4. (a) Hydrodynamic sizes determined by dynamic light scattering (DLS) and (b) Zeta potentials of MoS₂ NSs, BPM NSs, and RGD-QD-MoS₂ NSs.

S5. The Loading Efficiency of QDs on BPM NSs

Fig. S5. (a) UV-Vis-NIR absorption spectra of different QDs in aqueous solutions before conjugation with BPM NSs, and the residual QDs in supernatant after the coupling reaction and centrifugation; (b) PL spectra of QDs, the corresponding residual QDs after the coupling reaction in supernatant, and RGD-QD-MoS₂ NSs.

S6. The Photoluminescence Quantum Yield (PLQY) of QDs and RGD-QD-MoS₂ NSs

Material	QD525	QD580	QD655
PLQY	19.9%	33.4%	65.9%
Material	RGD-QD525-MoS ₂	RGD-QD580-MoS ₂	RGD-QD655-MoS ₂
PLQY	8.09%	13.5%	40.9%

Table S1. The PLQY of different QDs and RGD-QD-MoS₂ NSs.

S7. Cytotoxicity of MoS₂ NSs, BPM NSs, and QDs

Fig. S6. Cell viabilities of HeLa cells after incubation with various concentrations of (a) MoS₂ NSs, (b) BPM NSs, and (c) CdSSe/ZnS QDs for 48 h. The cell viability was determined by the LDH-Cytotoxicity Colorimetric Assay Kit.

Fig. S7. Confocal fluorescence microscopy images of HeLa cells incubated with (a-c) QD-MoS₂ NSs without RGD, and (d-f) RGD-QD-MoS₂ NSs for 12 h. Both the nanosheets suspended in DMEM medium (no FBS) contain 40 μ g/mL of MoS₂. All the cells were first fixed by formaldehyde and then blocked by BlockAidTM Blocking Solution. The scale bar represents 20 μ m.

S9. Flow Cytometry Analysis

Fig. S8. The normalized frequency of HOK and HeLa cells with different PL intensity after incubation with RGD-QD-MoS₂ NSs.

S10. In Vitro Photothermal Therapy

Fig. S9. Cell viability at different times after NIR laser irradiation. The cells were incubated with RGD-QD-MoS₂ NSs containing 40 μ g/mL of MoS₂ for 12 h, and then irradiated by a 785 nm laser at 0.4 W/cm² for 5 min. Cells irradiated by NIR laser without RGD-QD-MoS₂ NSs incubation were used as control. Cell viability was detected with a LDH-Cytotoxicity Colorimetric Assay Kit.

Fig. S10. Fluorescence microscopy images of HeLa cells co-stained with calcein-AM and PI at different times after 785 nm laser irradiation at the power density of 0.4 W/cm² for 5 min. Before the NIR laser irradiation, HeLa cells were incubated with RGD-QD-MoS₂ NSs (containing 40 μ g/mL of MoS₂) for 12 h. Viable cells were stained green with calcein, and dead cells were stained red with PI.

S11. Serum Stability of RGD-QD-MoS₂ NSs

Fig. S11. (a) The photoluminescence spectra of RGD-QD-MoS₂ NSs suspended in FBS aqueous solution before and after centrifugation; (b) Photo of RGD-QD-MoS₂ NSs suspended in FBS aqueous solution and the supernatant of RGD-QD-MoS₂ NSs suspended in FBS after centrifugation under UV irradiation (365 nm).

S12. Biodistribution of RGD-QD-MoS₂ NSs and QD-MoS₂ NSs

Fig. S12. (a) Fluorescence images and (b) Average photon counts of major organs and tumors of HeLa tumor-bearing Balb/c nude mice with i.v. injection of RGD-QD-MoS₂ NSs and QD-MoS₂ NSs.

S13. Tumor Temperature Evolution Curves

Fig. S13. Tumor temperature evolution curves of mice with i.v. injection of RGD-QD-MoS₂ NSs (containing 1.5 mg/mL of MoS₂, 200 μ L) or PBS under 785 nm laser at 0.8 W/cm².

S14. In Vivo Toxicity of RGD-QD-MoS2 NSs

Fig. S14. Body weight of mice from all four groups: i.v. injection of PBS; i.v. injection of RGD-QD-MoS₂ NSs (dose = 15 mg/kg); i.v. injection of PBS plus NIR laser irradiation; and i.v. injection of RGD-QD-MoS₂ NSs plus NIR laser irradiation (dose = 15 mg/kg, 0.8 W/cm², 5 min).

Fig. S15. H&E stained images of major organs of the Balb/c nude mice with different treatments. (a) Untreated healthy Balb/c nude mice were used as control; (b) Balb/c nude mice with i.v. injection of RGD-QD-MoS₂ NSs (dose = 15 mg/kg) for 1 day; (c) 21 day after the PTT treatment. Balb/c nude mice were i.v. injected of RGD-QD-MoS₂ NSs (dose = 15 mg/kg), and 785 nm laser irradiation was carried out at 24 h post-injection with a power density of 0.8 W/cm². The scale bar represents 100 μ m.

Fig. S16. Serum biochemistry assay and complete blood panel test. Healthy Balb/c mice with i.v. injection of RGD-QD-MoS₂ NSs (15 mg/kg) were sacrificed at 21 days post-injection for blood collection. Untreated healthy mice were used as control. (a) Liver function markers: alaninie aminotransferase (ALT), alkaline phosphatase (ALP), and aspartate aminotransferase (AST); (b) Blood urea nitrogen (BUN) levels; (c) Blood levels of white blood cells (WBC), red blood cells (RBC), platelets (PLT), hemoglobin (Hgb), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH) of RGD-QD-MoS₂ NSs treated mice (NSs) and untreated mice (Control). Statistic was based on triplicate samples.