Electronic Supplementary Information (ESI) for

Unsaturated metal sites-promoted approach to construct strongly coupled noble metal/HNb₃O₈ nanosheets for efficiently thermo/photo-catalytic reduction

Lijuan Shen,^{ab} Yuzhou Xia,^a SenLin,^a Shijing Liang^{*ab} and Ling Wu^{*a}

^aState Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116 (P.R. China)

^bNational Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002 (P.R. China)

*Corresponding Author. Tel.: +86-591-22865835; E-mail: sjliang2011@gmail.com (S. L.); wuling@fzu.edu.cn (L. W.)

Fig. S1 Digital photograph of the HNb₃O₈ nanosheets dispersion under UV light irradiation. The obvious color change of the HNb₃O₈ nanosheets dispersion indicates the generation of Nb⁴⁺ metal sites on the surface of the nanosheets.

Fig. S2 XPS spectra for O 1s of the HNb₃O₈ NS before and after light illumination.

Fig. S3 XRD pattern of bulk KNb₃O₈.

Fig. S4 Additional SEM images of bulk HNb₃O₈.

Fig. S5 SEM images of bulk KNb₃O₈.

Fig. S6 Energy-dispersive X-ray (EDX) analysis of HNb₃O₈ NS and hybrid Pd/HNb₃O₈ NS composite.

Fig. S7 XPS survey spectra of the as-synthesized Pd/HNb₃O₈ NS hybrid composite.

Fig. S8 High-resolution XPS spectra for Pd 3d of the Pd/HNb₃O₈ NS and Pd/HNb₃O₈-Bulk samples.

Fig. S9 Control experiments for catalytic hydrogenation of 4-nitroaniline (4-NA) over the Pd/HNb₃O₈ NS composite under room temperature: without the addition of HCOONH₄ (A); reaction without Pd/HNb₃O₈ NS (B); reaction with the HNb₃O₈ NS (C), and the reaction with the addition of Pd/HNb₃O₈ NS and HCOONH₄ in inert atmosphere (D).

Fig. S10 High-resolution XPS spectra for Nb 3d (a) and O1s (b) of the blank HNb_3O_8 NS and Pd/HNb₃O₈ NS samples.

Fig. S11 Typical TEM (a) and HRTEM image (b) of Pt/HNb₃O₈ NS.

Fig. S12 Typical TEM (a) and HRTEM image (b) of Au/HNb₃O₈ NS.