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CHARACTERIZATION OF THE FORM FACTOR BY A SLS MEASUREMENT

We performed a characterization of the liposome form factor, P (q), experimentally based on SLS measurements
and analytically described by a multimodal approach which takes into account different particle size populations.
With this approach we avoid those systematic errors involved in the Laplace transform of the field autocorrelation
function, gE(q; τ), obtained by a DLS measurement which, in principle, could contain a wide spectrum of relaxation
modes (H. Schnablegger and O. Glatter, Appl. Opt. 30, 4889 (1991), Ref. [80] in the main text).

As mentioned in the main text (section III.A), we describe the experimental form factor, Pexp(q), by assuming
a trimodal distribution whose first five moments are distributed according to a Schulz distribution. Indeed we
considered a Schulz distribution due to its efficiency to describe the size distribution of polydisperse systems of
mesosized particles coming from different synthesis protocols (B. D’Aguanno and R. Klein, J. Chem. Soc. Faraday
Trans., 87(3), 379 (1991) and B. D’Aguanno and R. Klein, Phys. Rev. A, 46, 7652 (1992), Refs. [78, 79] in the main
text).

Our first step to reach our characterization of Pexp(q) involves the transformation of a generic continuous Schulz
distribution with a given mean and standard deviation (polydispersity) into an optimal trimodal distribution. The
continuous Schulz distribution for a variable size diameter, σ, with mean value σ̄ and variance 〈σ2〉 is given by:

fSchulz(σ) =
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σ̄
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(1)

Where Γ(x) is Euler’s Gamma function and t a measure of the distribution width defined in terms of σ̄ and 〈σ2〉:

t =
2σ̄2 − 〈σ2〉
〈σ2〉 − σ̄2

(2)

To obtain the optimal trimodal distribution which better approaches a Schulz distribution, we impose the equality
of the first five moments of both distributions (Schulz and trimodal) and solve the corresponding five non-linear
equations by a Newton-Raphson method. In Table I we show our results for five different polydispersities. Thus,
a given polydispersity has three associated modal diameters, σi (i ∈ {1, 2, 3}), and three corresponding relative

frequencies, ci where
∑

3

i=1
ci = 1.

TABLE I: Parameters corresponding to a trimodal distribution whose first five moments are distributed accord-

ing to a Schulz distribution normalized by σ̄. We have highlighted those values associated to a polydispersity

of 0.2 which corresponds to the value obtained for the magnetic liposomes presented in the main text.

Polydispersity (
√

〈σ2〉/σ̄) c1 c2 c3 σ1/σ̄ σ2/σ̄ σ3/σ̄

0.10 0.617 0.358 0.025 1.059 0.877 1.311

0.15 0.716 0.255 0.029 0.933 1.236 0.582

0.20 0.635 0.271 0.094 1.013 0.730 1.447

0.25 0.076 0.611 0.313 1.607 1.085 0.689

0.30 0.065 0.345 0.590 1.773 0.648 0.583
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The second step consists in finding those σi and ci values (Table I) which better reproduce the experimental form
factor, Pexp(q), that is, those σi and ci values for which the deviation, δ, is minimum over all the explored q values
(scattering angles), Nq:

δ =

Nq
∑

j=1

[

Pexp(qj)−
(

3
∑

i=1

ciPi(qj)

)]2

(3)

As mentioned in the main text, each Pi(q) appearing in Eq. (3) adopts the form of a solid sphere in the context of
the Rayleigh-Gans-Debye (RGD) theory (J. Dhont, An Introduction to Dynamics of Colloids, Amsterdam: Elsevier
(1996), Ref. [74] in the main text):

Pi(q) =

[

3 (sin(qRi)− qRicos(qRi))

(qRi)3

]2

(4)

Where Ri = σi/2 is the radius of species i ∈ {1, 2, 3}. Therefore we performed a multimodal (in particular trimodal)
description of our form factor Pexp(q) (Fig.2a) in the main text) as:

Pexp(q) ∼=
3
∑

i=1

ciPi(q) (5)

The optimal values we obtained for our approximation are those corresponding to a polydispersity of 0.2 (high-
lighted in Table I). This corresponds to the σi and ci values represented in Fig. 1.
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Fig.1. Diameter relative frequencies from a trimodal distribution for the magnetic liposomes presented in the main
text as obtained from the fitting of Pexp(q) according to Equations (3) and (4) and Table I. The different
populations would correspond to σ1 = 182.3 nm, σ2 = 131.4 nm, and σ3 = 260.5 nm, where σ̄ ∼= 180 nm.
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MAGNETIC NANOPARTICLE IN A MAGNETIC FIELD: MAGNETIC DRIFT VERSUS DIFFUSION

In this section we show that the effect on the magnetic liposome motion due to a hypothetical velocity induced
by the magnetic field is negligible compared to the effect of the purely diffusive (Brownian) motion. To prove this
statement we will show that:

• The hypothetical velocity induced by the magnetic field would reach a stationary modulus and have a direction
which would be parallel to the magnetic field.

• The modulus of the hypothetical velocity due to the presence of the magnetic field would induce displacements
within the correlation time of the field autocorrelation function, gE(q; τ), which are negligible compared to those
displacements induced by diffusion.

Let us consider the first point.

The force, ~Fmag, acting on a magnetic particle immersed in a magnetic field, ~B, is (S.S. Shevkoplyas, A.C. Siegel,
R.M. Westervelt, M.G. Prentiss, and G.M. Whitesides, Lab Chip, 7, 1294 (2007), Ref. [77] in the main text):

~Fmag =
V∆χ

µ0

(

~B · ~∇
)

~B (6)

Where V is the particle volume, ∆χ the difference in magnetic susceptibilities between the particle and the
surrounding medium, and µ0 the permeability of vacuum.

Fig.2. Sketch of a particle moving vertically from the bottom of the scattering cell at a constant velocity, ~vmag,
which results from the balance between magnetic and fluid friction forces. Both the particle size (given by Rh) and
the scattering volume (defined by the linear length ls <∼ 0.5 mm) have been magnified in the figure. The diameter of
the cylindrical iron bar is d = 22± 1 mm whereas the distance between the bottom of the cell and the laser beam is
h ∼= 5 mm (note that the figure is merely illustrative and the real ratio d/h ∼= 4 is not as the aspect ratio shown in

the figure).
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As show in Fig. 2, in our experiments the homogeneous magnetic field line confinement and the fact that the
linear size, ls, defining the scattering volume is much smaller than the length scale defining the iron bar, d, result
in a magnetic field with only z-component, ~B = Bzk̂. Thus Eq. (6) leads us to a magnetic force which only has

z-component, ~Fmag = Fz k̂:

~Fmag =
V∆χ

µ0

Bz

∂Bz

∂z
k̂ = Fz k̂ (7)

From Eq.(7) we see that the magnetic force would come from the variation of the magnetic field along the vertical
axes (∂Bz/∂z). In principle, we can expect a small vertical magnetic field gradient due again to the vertically
homogeneous magnetic line confinement inside the tiny scattering volume. In the second point of this dissertation we
will show that, if this vertical gradient is present, it would induce extremely slow velocities.

Since the magnetic particle is immersed in a fluid, the vertical magnetic force (Eq. (7)) will be balanced by a fluid

friction force proportional to the particle velocity, ~Ffric ∼ ~v, which has the same direction of ~Fmag but opposite
sense. As a consequence, the magnetic particle will immediately reach an equilibrium for the z-component which
results in a constant velocity, ~vmag = |~vmag|k̂ (see for instance J. Dhont, An Introduction to Dynamics of Colloids,
Amsterdam: Elsevier (1996), Ref. [74] in the main text):

~Fmag + ~Ffric = (Fz − γ|~vmag|) k̂ = 0 (8)

Where γ is the Stokes coefficient. Therefore Eq. (8) shows the first result we wanted to prove.

At this point we should note that for small velocities, ~vmag, i.e. velocities inducing displacements similar to (or
smaller than) those induced by diffusion, we would not detect the effect of ~vmag in the field correlation function
obtained by our DLS measurements. Indeed for such a velocity the field autocorrelation function would read (B.
Berne and R. Pecora, Dynamic Light Scattering With Applications to Chemistry, Biology, and Physics, Dover
Publications, Mineola, New York (2000), Ref. [72] in the main text):

gE(q; τ) = exp(i~q · ~vmagτ)exp(−Dq2τ) (9)

Since the scattering vector ~q is included in the scattering plane (XY -plane in Fig. 2), we have ~q · ~vmag = 0.
Therefore, in this case Eq. (9) would just contain the diffusive motion and would result in:

gE(q; τ) = exp(−Dq2τ) ; ~q · ~vmag = 0 (10)

Once this result (Eq. (10)) has been reached we just have to prove that the displacements induced by ~vmag are
similar to (or smaller than) those induced by diffusion within the time needed to decorrelate the field autocorrelation
function by pure Brownian motion (this is indeed the second point of this dissertation). We will prove that the
displacements induced by ~vmag are indeed negligible compared to those induced by the particle diffusion. This
is an important result since the effect of ~vmag when interpreting DLS data would be negligible not only in the
experiments we performed in the present work (where ~q · ~vmag = 0) but even in those experiments where ~vmag has a
non-zero projection into the scattering plane (~q · ~vmag 6= 0 ). To prove this (final) statement we will consider a crude
experimental fact: in all the light scattering experiments we performed the time average scattered light intensity,
〈I(q; t)〉, reaches a final stationary value which never decays within the duration of our DLS experiments (see sections
II.D.2, III.B, and III.C in the main text).
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The typical duration of our experiments for an aggregation kinetics experiment is of the order of texp ∼ 1 hour
(see section III.C in the main text). If |~vmag| > h/texp all the particles coming from the bottom of the scattering
cell (see Fig. 2) would overpass the laser beam and the scattered intensity would immediately drop (there will
be no particles in the scattering volume). However, as mentioned before, 〈I(q; t)〉 remained constant during our
experiments. This experimental fact introduces an upper bound for the velocity induced by the magnetic field given by:

|~vmag| ≤
h

texp
∼= 1 µm/s (11)

Let us now consider the time needed to decorrelate the field autocorrelation function, gE(q; τ), by pure Brow-
nian diffusion. This time is τB = (Dq2)−1 (see Eq. (10)), where D is the particle diffusion coefficient and
q = (4πn/λ) sin(θf/2), being θf = π/2 the scattering angle, λ = 633 nm the laser wavelength, and n = 1.33 the
water refraction index (section II.D.2 in the main text). The particle displacement, ∆lB, during this time due to
pure Brownian diffusion will be given by Einstein’s equation (〈∆~r(τB)

2〉 = 6DτB):

∆lB =
√

〈∆~r(τB)2〉 =
√

6DτB =

√

6D
1

Dq2
=

√
6

q
(12)

The resulting Brownian displacement is ∆lB ∼= 130 nm. Let us now compare this displacement with the displace-
ment, ∆lmag, that we could in principle obtain due to the magnetic drift according to Eq. (11) for the same time
τB:

∆lmag = |~vmag|τB = |~vmag|
1

Dq2
(13)

To evaluate Eq. (13) we use Stokes-Einstein relation D = kBT/6πηRh, where kB is Boltzmann’s constant,
T = 298◦K the absolute temperature, η = 9.1 · 10−4 Pa·s the water shear viscosity at 298◦K, and Rh the particle
hydrodynamic radius. In particular, we evaluate Eq. (13) for the typical single liposome radius, Rh

∼= 100 nm,
and for the radius of the biggest aggregates we measured in our aggregation kinetics experiments, Rh

∼= 500 nm
(see B = 38.8 mT, Fig. 3, section III.B, in the main text). According to Eq. (11), |~vmag| ≤ 1 µm/s, we obtain:
∆lmag ≤ 1.2 nm for Rh = 100 nm and ∆lmag ≤ 6 nm for Rh = 500 nm. In both cases the maximum displacement
we can expect due to the magnetic drift is about two orders of magnitude smaller than that corresponding to the
Brownian displacement for the same time, ∆lB ∼= 130 nm. In conclusion we can neglect the effect of the magnetic
drift in our DLS experiments by two independent arguments, the first one based on the direction of ~vmag (Eq. (10))
and the second one based on the small modulus of ~vmag, which would lead to really small displacements compared
with the diffusive ones.


