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S1. The notation of Bi-NTs
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Figure S1: The hexagonal lattice of a single Bi bilayer and the notation of Bi-NTs. A Bi-NT
is formed by rolling up a single Bi bilayer along a chiral vector. The atomic structure of
a Bi-NT defined by the chiral indices, (n,m). If m=0, the nanotubes are called zigzag Bi-
NT, and if n=m, the nanotubes are called armchair Bi-NT, in the same notation of carbon
nanotubes. We defined the zigzag Bi-NTs as (n,0) Bi-NTs.
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S2. The interaction strength of intertube coupling
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Figure S2: Interaction strength of intertube coupling in Bi-NT array. (a) Schematic cross-
section view of the equilibrium structure, depicting the tube orientation angle ϕ. (b) The
Binding energy of a (7,0) Bi-NT array as a function of the intertube spacing a0. (c) Depen-
dence of the array binding energy (∆E) on the orientation angle ϕ of individual nanotubes.
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S3. Other possible intertube bonding geometries
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Figure S3: Bonding geometries of Bi-NT arrays. (a) Top view and side view of two Bi
bilayer. (b) Different structural types of Bi-NT arrays. Using (7,0) Bi-NT, the two simple
types of arrays that are typically rolled from a Bi bilayer sheet at point A or B in (a). Dashed
lines represent the unit cell of Bi-NT array. Type B is only more stable by 1meV/atom. (c)
Calculated band structure of type B Bi-NT array. (d) Energy dispersion of edge states for
the Bi-NT array nanoribbon of type B.
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S4. The robustness of QSH phse against the structural disorder
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Figure S4.1: (a) The (7,0) Bi-NT array with varying intertube distance. (b) Calculated total
energy difference (∆E) and energy gap (Eg) as a function of intertube distance. There is a
topological phase transition from QSH to normal insulator (NI) at +19% intertube distance.
(d) Atomic structure of disordered Bi-NT array. There are two different intertube spacings
in the double-sized supercell along x direction. Calculated band structure of (e) pristine and
(f) ±4% and (g) ±8% disordered (7,0) Bi-NT array. The band structure near Fermi level is
quite robust against the structural disorder.
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Figure S4.2: (a), (b) The side view of modeled ripple structures using (7,0) Bi-NT. The
dashed line indicates unit cell along the x direction. The dots indicate the center of nan-
otubes. (c), (d) The calculated band structures for the ripple structures (a) and (b), respec-
tively. Both structures are extreme cases that whole area is covered by the rippled structure.
Even for this extreme condition, the topological phase is still preserved with a topological
gap ∼34 meV and ∼54 meV for the ripple structure in (a) and (b), respectively.
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S5. Strucutural stability of Bi-NT
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Figure S5.1: (a)-(c) Calculated phonon band dispersions for pristine (7,0), (13,0), (17,0)
Bi-NT, respectively. No imaginary frequency is observed, supporting the structural stability
of Bi-NTs.
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Figure S5.2: Ab initio molecular dynamics (MD) simulation for (7,0) Bi-NT array. (a)
Temperature variation with time, and the green dots denote the times of snap shots taken
in (b). We used a tripled unit cell along the x direction and the MD simulations are done
using canonical ensemble at 300 K. (b) Snap shots of the structures at different times,
demonstrating the stability of (7,0) Bi-NT array at room temperature.
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S6. The calculated Z2 topological invariant of Bi-NT arrays

For the numerical computation of Z2 invariants, several approaches have been proposed.

Here we follow the approach introduced by Soluyanov and Vanderbilt [1]. This method can

be applied to cases without inversion symmetry. To describe Z2 invariants, we first introduce

the time-reversal polarization as [2]

Pθ = P I + P II , (1)

where P S =
∮
BZ

AS(k) dk, with Berry connection A(k) = i
∑

n 〈unk|∂k|unk〉 and S = I

or II for a system whose occupied bands split into two groups (I and II) which are time-

reversal partners with each other. The topological invariant can be described by an adiabatic

pumping of time-reversal polarization between t=0 and T/2

Z2 = Pθ(T/2)− Pθ(0)mod(2). (2)

We can rewrite equation (2) in terms of the Wannier charge centers (WCCs). The charge

polarization is related to the position of Wannier functions (WFs) in a subsystem, and

the time-reversal polarization can be understood as the adiabatic shift of WFs. The WFs

associated with the lattice vector R can be written as

|R, n〉 =
1

2π

∫ π

−π
dke−ik(R−x) |unk〉 . (3)

The WCC for the n-th state, x̄n , can be defined as the mean value of 〈0n|X̂|0n〉, where X̂

is the position operator and |0n〉 is the state corresponding to a WF in the cell with R = 0.

Then we obtain

x̄n =
i

2π

∫ π

−π
dk 〈unk|∂k|unk〉 . (4)

Taking into account that
∑

n x̄
S
n = 1

2π

∮
BZ

AS(k) with S = I or II, equation (2) yields
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Z2 =
∑
α

[x̄Iα(T/2)− x̄IIα (T/2)]−
∑
α

[x̄Iα(0)− x̄IIα (0)]. (5)

In this pumping process when applied to a 2D topological insulator, we can define the

reciprocal space with k1 and k2, which play the roles of k and t, respectively. Using above

formalism, we can directly look at the evolution of WCCs for effective 1D systems of pumping

parameter k2 in the subspace of occupied states. At k2=0, the WCCs appear in degenerate

pairs due to time-reversal symmetry. When k2 moves away from the origin, the WCC pairs

split and recombine at k2=π. Therefore, the evolution of each WCC pair determines the Z2

topological invariant of system by the number of crossings between the evolution lines and

the reference line. If it is odd, then the Z2 number is odd. In our system, we can define the

WCCs in kx, kz reciprocal space. The corresponding results for the Bi-NT arrays are shown

in Fig. S6. We choose kz as the pumping parameter.
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Figure S6: The Z2 topological invariants of Bi-NT arrays. (a)-(c) Evolution of Wannier
charge centers (WCCs), x̄, as obtained for (7,0), (13,0), and (17,0) Bi-NT arrays, respectively,
by varying the pumping parameter kz. Upper panels are enlarged WCCs near x̄ = 0. The
evolution curves (blue solid line) cross an arbitrary reference line (red dashed line) odd
number of time. The odd number of crossings indicates that the Kramer pairs with time-
reversal-invariant momenta exchange their partners during the pumping process, so that the
corresponding system is a nontrivial phase.
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S7. The band structure using hybrid functional HSE06
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Figure S7: (a) The calculated band structure of (7,0) Bi-NT array using the GGA and
HSE06 functional for comparison. The GGA band gap (70 meV) is about 30% smaller than
the HSE06 band gap (104 meV). (b) Evolution of WCCs for (7,0) Bi-NT array using HSE06
functional.
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S8. Effective model for Bi-NT array

The effective Hamiltonian for the Bi-NT array system can be constructed by applying

a perturbative k · p theory to quantitatively describe the bulk states near the Γ point,

albeit using molecular orbital wavefunctions instead of atomic orbital wavefunctions as done

conventionally before [3]. Specifically, the states are mainly contributed by four hybridized

states of Bi-NT molecular orbitals, denoted as (|Ψ, ↑〉 , |Ψ∗, ↑〉 , |Ψ, ↓〉 , |Ψ∗, ↓〉), where Ψ,Ψ∗

stand for a bonding and anti-bonding molecular orbital, respectively. The Hamiltonian is

written as

H(~k) = ε0I4×4 +



M(~k) Akx iαRkx 4c

Akx −M(~k) −4c −iαRkx

−iαRkx −4c M(~k) −Akx

4c iαRkx −Akx −M(~k)


, (6)

where ε0 = C + Dk2, M(~k) = M − Bk2, and k2 = k2x + k2z , with A,B,C,D, αR,4c and M

beging the model parameters. We consider the Rashba SOC, αR, to account for the Rashba

effect along x direction and the effect of inversion symmetry through 4c. For M/B <0, the

system is in the normal phase [Fig. S8(a)]. As | M | decreases, the gap decreases until it

closes at M=0 as shown in Fig. S8(b). For M/B >0, the gap opens again, the bonding and

anti-bonding band inversion is induced, leading to a topological phase as illustrated in Fig.

S8(c).

Topological order depends on the sign of parameter M , which is related to SOC strength

parameter λso in the MS. In the first-principles calculation, the SOC can be included as a

perturbation in the scalar relativisitic Hamiltonian with a self-consistent treatment at each

variational step. The total Hamiltonian of system is given by

H = H0 +HSO (7)
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Figure S8: Energy dispersion of the effective model with parameter A = −3.62 eV, B =
−18, C = 0 eV, D = −0.594 eV, (a) for normal insulating phase αR = 0 eV, 4c = 0 eV and
M = 0.02 eV; (b) for phase transition point αR = 0.9 eV, 4c = 0.03 eV and M = 0 eV; (c)
for topological insulating phase αR = 1.2 eV, 4c = 0.03 eV and M = −0.02 eV.

where H0 is the scalar relativistic Hamiltonian and HSO is the spin-orbit Hamiltonian, which

has the form

HSO =
h̄2

2m2c2
1

r

dV

dr
~L · ~σ = λso~L · ~σ, (8)

λso is the SOC strength. We can perform DFT calculations to artificially tune λso by changing

light velocity c. With increasing λso, we can find the critical SOC at the gap closing point,

which corresponds to M = 0 in the effective model.

12



S9. The molecular bonding vs. antibonding orbitals of Bi-NTs

For the distinction between atomic orbital inversion and molecular orbital inversion, we

further studied the topological phase transition in single Bi bilayer (atomic band inversion)

[Fig. S9(a)] vs. (13,0) Bi-NT (molecular band inversion) [Fig. S9(b)]. Fig. S9(c),(d) shows

the calculated band structure and squared-wave function of the valence and conduction band

at the Γ point for single Bi bilayer. The p orbitals of two bismuth atoms in a unit cell forms

the bonding and antibonding state with definite parity (±). Without SOC, the valence band

composed of bonding Bi p+x±iy orbitals while conduction band composed of antibonding Bi

p−z . When we further take into account the effect of SOC, these band orders are inverted

[Fig. S9(d)]. For the Bi-NT, the form of cylindrical bismuth molecules, we also did same

calculation using (13,0) Bi-NT [Fig. S9(e),(f)]. Without SOC, we can clearly see the bonding

and antibonding molecular states from a linear combination of many Bi px,y and pz orbitals,

respectively. The valence and conduction bands are no longer composed of single atomic

orbital. When we considered SOC in Bi-NT, these molecular bonding and antibonding

character are inverted. We can applied these molecular orbitals to Bi-NT array system and

found that topological phase transition is related with molecular orbital inversion.
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Figure S9: (a) Atomic structure of single Bi bilayer with rectangular unit cell and corre-
sponding Brillouin zone. (b) Atomic structure of single (13,0) Bi-NT. (c) Calculated band
structure of single Bi bilayer without SOC (left panel) and with SOC (right panel). (d)
Squared single atomic wave-function of the conduction and valence states as indicated by
dots in (c) without SOC and with SOC, respectively. (e) Calculated band structure of (13,0)
Bi-NT without SOC (left panel) and with SOC (right panel). (f) Squared molecular wave-
function of the conduction and valence states as indicated by dots in (e) without SOC and
with SOC, respectively.
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S10. The charge redistribution at the junction point

(a)

(b)

(c)

Figure S10: Charge redistribution of Bi-NT arrays. (a) Charge accumulation (red) and
depletion (blue) of a (7,0) Bi-NT array. The induced charge density ∆ρ = ρ [(7,0) Bi-NT
array] − ρ [pristine (7,0) Bi-NT] relative to the charge densities obtained when Bi-NTs
are decoupled completely. (b) The potential difference ∆V = V [(7,0) Bi-NT array] − V
[pristine (7,0) Bi-NT] of a (7,0) Bi-NT array. Yellow (green) surfaces correspond to a positive
(negative) induced potential. Due to redistribution of charge density, an electric field (out
of tube direction) is induced at the junction point. (c) Effectively the case is similar to a
single Bi bilayer under electric field.
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S11. The localization length of edge states

To determine the localization length of topological edge state, we use the BHZ Hamilto-

nian [3-4] in the low-energy regime as

HBHZ(~k) =

h(~k) 0

0 h∗(−~k)

 , (9)

h(~k) = ε(k)I4×4 + ~k · ~σ (10)

ε(k) = C −Dk2, ~d(k) = [Akx, Aky,m(k)], (11)

m(k) = M −Bk2, k2 = k2x + k2y, (12)

where A,B,C,D and M are material parameters. Here, I2×2 is a 2×2 unit matrix, ~σ is the

Pauli matrix. The general solution for the edge states can be derived analytically. We deal

with a system on a half plane. By putting a trial solution ψ = eλy into the Schrödinger

equation

HBHZ(kx,−i∂y)ψ = Eψ, (13)

the secular equation is

det | HBHZ(kx,−iλ)− E |= 0, (14)

which gives four solutions of ±λ1 and ±λ2,

λ1,2 =

√
k2x + F ±

√
F 2 − (M2 − E2)/(B+B−), (15)

where F = A2−2(BM+DE)
2B+B−

and B± = B ±D. If we apply a boundary condition as

ψ(y = 0) = 0 and ψ(y →∞) = 0, (16)
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one can get

λ1λ2 =
BM +DE

B+B−
− k2x, λ1 + λ2 =

DM +BE

kxB+B−
. (17)

Combine (17) with (15) , one gets the dispersion of edge states

E = −DM/B ± A
√
B+B−/B2kx. (18)

The dispersion shows a massless Dirac cone with the Fermi velocity vF = (A/h̄)
√
B+B−/B2.

From equation (17) and (18), one can get

λ1,2 =
M

B
+

2DG

B
kx − k2x, λ1 + λ2 = 2G, (19)

where G = ±/(2
√
B+B−). The properties of the solution for λ1,2 determine the spatial

distribution of the wavefunctions in real space. The edge states distribute mostly near

the boundary (y = 0), with the scale of the decay length about λ−1
1,2 for real λ1,2, mainly

determined by the larger one of the λ−1
1,2 [4]. If we choose λ1 > λ2, λ

−1
2 gives the physical

localization length l. For example, λ2=0, the localization length is infinite and the edge

states extend to the whole bulk area. From equation (19), this appears when kx = k±x =

DG/B ±
√

(DG/B)2 +M/B. We note that the states at kx = k±x are located at the band

edge of the projection of the bulk band and, at these points, the edge dispersion is tangential

to the bulk band projection. We can rewrite λ1λ2 = −(kx − k+x )(kx − k−x ). Then, λ2(= l−1)

is expressed as

l−1 = G−
√
G2 + (kx − k+x )(kx − k−x ). (20)

Fig. S11(a) shows the behavior of l−1. At the points where edge state merging with bulk

band, P±(kx = k±x ), l goes to infinite. l has the minimum value at kx = (k+x + k−x )/2, with

lmin=1/[G−
√
G2 − (k+x − k−x )2/4]. When G = (k+x − k−x )/2, lmin=2/(k+x − k−x ). Therefore,

l−1 is approximately given by the k-space distance between the two points P+ and P−.

In the Bi-NT arrays, the localization length of the edge states can be calculated using

17
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Figure S11: (a) Localization length l for the effective model with energy dispersion. Shaded
regions denote the energy spectrum of bulk. The color indicates the inverse of l at each
k point. (b) Energy dispersion of edge states for the structure of nanoribbons made of
a finite number of 16 Bi-NTs of infinite length for the side-termination. Left panel is the
enlargement of the bands near the point where the points representing the edge states merged
into bulk state. (c),(d) The charge distribution of edge states at the Dirac point for side-
and end-termination, respectively. The calculated minimum localization length (lmin∼4.36
nm for side-termination and lmin∼3.68 nm for end-termination) is indicated by arrows from
boundary Bi-NT.

these two points P± [Fig. S11(b)]. From the band structure, we can get k+x = 0.28 nm−1

and k−x = −0.18 nm−1. The calculated lmin for edge states of side-termination Bi-NT array

is ∼4.36 nm. Comparing charge distribution of edge state, this minimum localization length

corresponds to a distribution of edge state across ∼ 4 nanotubes [Fig. S11(c)]. For the end-

termination, we can get k+x = 0.61 nm−1, k−x = −0.48 nm−1 and lmin∼3.68 nm [Fig. S11(d)].

Moreover, the localization length determines the minimal width of the system required for

electrical contacts of transport measurement.
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S12. The QSH phase of various Bi-NT arrays
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Figure S12: The QSH phase of various Bi-NT arrays. (a)-(c) Band structure as the SOC
strength is changed from 0 to 0.7, and to 1 of the true value in (13,0) Bi-NT array. (e)-(g)
Band structure as the SOC strength is changed from 0 to 0.63, and to 1 of the true value in
(17,0) Bi-NT array.
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S13. The calculated band structure of Bi-NT arrays on the BN sheet.

0

3

E
n
e
rg

y
 (

e
V

)

(b)

Z Γ X
−0.5

0

0.5

E
n
e
rg

y
 (

e
V

)

(c)

Z Γ X

2

1

−1

−2

−3

(a)

Boron nitride sheet

BiNT array

BN

Figure S13: Topological robustness of Bi-NT arrays on insulating boron nitride (BN) sub-
strate (sheet). (a) Schematic structure of (7,0) Bi-NT array on the BN substrate. (b)
Calculated band structure of (7,0) Bi-NT on the BN sheet. Shaded region in (b) is enlarged
in (c). Non-trivial character of (7,0) Bi-NT array is still preserved on the BN substrate.
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S14. The non-trivial edge state of curved Bi-NT array
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Figure S14: The robustness of topological edge state of curved Bi-NT array. (a) The topo-
logical edge state for the (7,0) Bi-NT nano-array structure for curved geometry shown in
(b). (b) The real space charge distribution of topological edge states at the Dirac point are
shown with an isosurface of 2×10−4 e/Å3.

References

(1) A. A. Soluyanov, and D. Vanderbilt, Phys. Rev. B 83, 235401 (2011).

(2) L. Fu, and C. L. Kane, Phys. Rev. B 74, 195312 (2006).

(3) B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).

(4) B. Zhou, H.-Z. Lu, R.-L. Chu, S.-Q. Shen, and Q. Niu, Phys. Rev. Lett. 101, 246807

(2008).

21


