Electronic Supplementary	/ Material (ES	SI) for Nanoscale.
--------------------------	----------------	--------------------

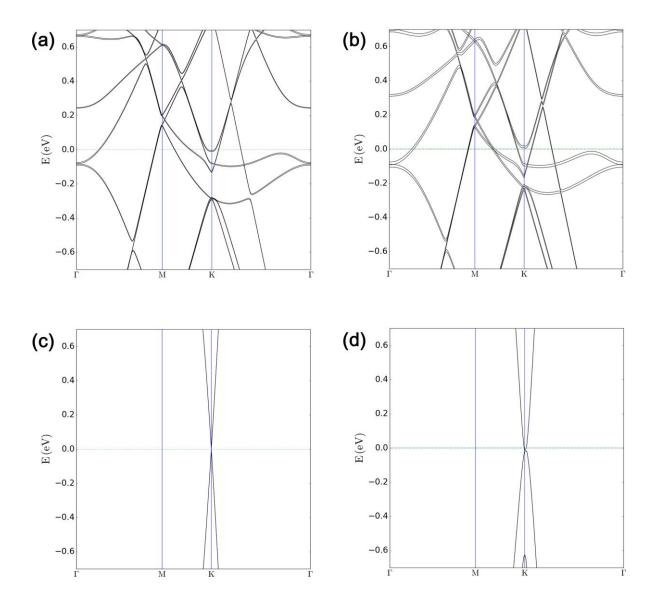
Supporting Information

First-principles Study for MXene Terahertz Detector

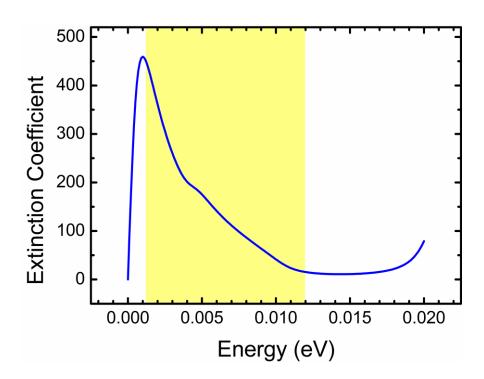
Young In Jhon, Minah Seo, and Young Min Jhon*

Sensor System Research Center, Korea Institute of Science and Technology Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea

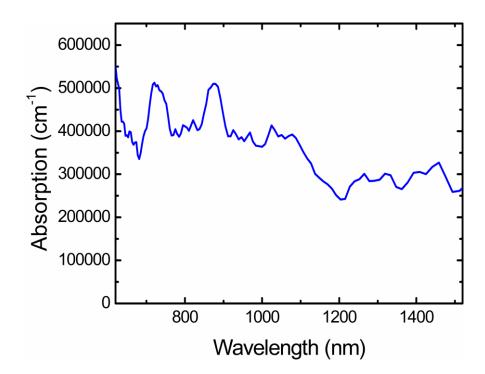
E-mail: ymjhon@kist.re.kr


Computational Details

Electronic Structures and Optical Properties: For the DFT calculations of the electronic band structures and optical properties of MXene and graphene, generalized-gradient approximation with Perdew–Burke–Ernzerhof exchange–correlation functional was employed considering spin-polarization and spin-orbit coupling. The structures of the systems were relaxed with a variable cell size until the maximum force reduced below 0.05 eV Å⁻¹. The density mesh cutoff energy was set to be 150 hartree.


The size of the optimized hexagonal cell was 6.31 Å \times 6.31 Å \times 30 Å in the monolayer Ti₃C₂ while it was 6.31 Å \times 6.31 Å \times 9.87 Å in the stacked Ti₃C₂. The Monkhorst-Pack grid of k-point sampling was set to be $5\times5\times1$ and $5\times5\times3$ in the geometric optimization of monolayer Ti₃C₂ and stacked Ti₃C₂, respectively, while it was taken as $15\times15\times1$ and $15\times15\times9$ in the calculations of the electronic band structure and optical properties.

Meanwhile, the size of the optimized hexagonal cell was $2.46 \text{ Å} \times 2.46 \text{ Å} \times 30 \text{ Å}$ in the monolayer graphene while it was $2.46 \text{ Å} \times 2.46 \text{ Å} \times 6.71 \text{ Å}$ in the stacked graphene. The Monkhorst-Pack of k-point sampling was set to be $13\times13\times1$ and $13\times13\times5$ in the geometric optimization of monolayer graphene and stacked graphene, respectively, while it was taken as $39\times39\times1$ and $39\times39\times15$ in the calculations of the electronic band structure and optical properties.


Thermoelectric Properties: In the analysis of thermoelectric figure of merit (ZT) of stacked Ti_3C_2 flakes, the phonon transmission spectrum was obtained using a molecular mechanics based on the reactive force field with the k-mesh of 71×23 and solving the dynamic matrix of the supercell of $9\times3\times1$, while the electron transmission spectrum was calculated using a density-functional tight-binding approach based on the Slater-Koster method with the k-mesh of 27×9 . The mesh of k_z in the electrodes was 100.

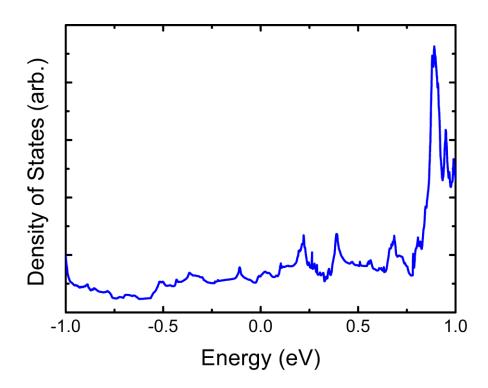

Figure S1. The electronic band structures of (a) monolayer Ti_3C_2 , (b) stacked Ti_3C_2 , (c) monolayer graphene, and (d) stacked graphene.

Figure S2. The extinction coefficient spectrum of monolayer Ti_3C_2 in the THz range. The shaded region indicates the THz range.

Figure S3. The visible to near-infrared optical absorption spectrum of stacked Ti_3C_2 .

Figure S4. The electronic density of states of stacked Ti_3C_2 with interlayer water molecules.