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Fig. S1. Characterization of nanoengineered nanotopographic surfaces. (a) Schematic of
nanotopography generated by RIE on glass surfaces. (b) Nanoroughness as a function of RIE
process time. (¢) AFM topographs of glass substrates before (left; R, = 1.3 nm) and after
(middle&right; R, = 101 nm & 203 nm) RIE processing. (d) XPS survey spectra measured for
glass substrates before (blue curve) and after RIE nanoetching (red curve). (e) Merged phase-
contrast and anti-vitronectin immunofluorescence image of micropatterned glass substrate with
vitronectin coating. (f) Normalized fluorescence intensity at the dash lines (I-III) in e. No
significant difference in fluorescence intensity of the adsorbed vitronectin proteins was observed
in the unprocessed smooth and RIE-processed nanorough regions.



)

wfﬁi'nanotopography

e
6 well tis’sue culture plate

Fig. S2. (a&b) Photograph showing a 4-inch glass wafer with nanotopographic features (a)
before cut and placed into tissue culture dishes (b). (¢) Representative SEM images showing
hPSCs plated on smooth (R, = 1 nm) and nanorough (R, = 150 nm) glass surfaces.
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Fig. S3. Representative immunofluorescence images showing temporal expression of
pluripotency (Oct3/4; red) and neuroectodermal (PAX6; green) markers during neural induction
of hPSCs in neural induction medium on smooth (top; R, = 1 nm) and nanorough (bottom; R, =
200 nm) glass substrates as indicated.



d 12 OCT4 b 12 NANOG

1.0 1.04 1nm
o @ 1 200 nm
2 0.8- 2 0.8-
e e
O 064 G 0.6-
g T
S 0.41 S 0.4-
0.2 E D2 &
il = - e B Bl
0 2 4 6 0 2 4 6
Day Day
C  &oo; PAX6 . d s SOX1
i 40-
© 600- 3
5 & 30-
S 400- o
i=] T -
200- 104 ﬂ
*
0 — i—l - 0-_==.-=_£ |
0 7 4 6 0 2 4 6
Day Day

Fig. S4. qRT-PCR analysis for temporal expression of pluripotency (OCT4 and NANOG; a&b)
and neuroectodermal (PAX6 and SOX/; c&d) markers during neural induction of hPSCs. hPSCs
were cultured in neural induction medium on smooth (R, = 1 nm) and nanorough (R, = 200 nm)
surfaces. Expression level of OCT4, a pluripotency marker, was reduced on both nanorough and
smooth glass substrates at day 2. NANOG, another gene associated with pluripotency, decreased
more significantly at both day 4 and 6 on nanorough (R, = 200 nm) glass substrates compared
with smooth controls (R, = 1 nm). Genes associated with neural lineages, including PAX6 and
SOX1, showed greater levels of expression on nanorough surfaces after day 2 when compared to
smooth controls. Expression level of each gene was normalized to data from undifferentiated
hPSCs. Data represent the mean + s.e.m with n = 3. P-values were calculated using the Student’s
paired sample #-test. *, P <0.05; **, P <0.01.
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Fig. S5. (a) Representative immunofluorescence images showing PAX6+ NEs and p75+ NCs
after 8 days of culture on smooth (R, = 1 nm) and nanorough (R, = 100 nm & 200 nm) glass
surfaces. (b) Percentages of p75+ NC cells derived from hPSCs at day 8 as a function of
nanoroughness. Data represent the mean + s.e.m. with n = 3. P-values were calculated using the
Student’s paired sample #-test. **, P < 0.01.
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Fig. S6. (a) Representative immunofluorescence images showing Tujl+ cells after 24 days of
differentiation in MN differentiation medium on smooth (R, = 1 nm) and nanorough (R, = 200
nm) glass substrates. (b-¢) Bar plots showing normalized Tujl+ (b) and HB9+ (c) cell numbers
at day 24 as a function of surface nanoroughness as indicated.
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Fig. S7. Purity and yield of motor neurons (MNs) derived from hPSCs are improved on
nanorough substrates with a 32-day differentiation protocol. (a) Schematic diagram showing
experimental design for sequential neural induction, patterning, and maturation of MNs from
hPSCs. hPSCs were cultured on vitronectin-coated smooth (R, = 1 nm) and nanorough (R, = 200
nm) glass substrates in neural induction medium containing the dual Smad inhibitors SB and
LDN for 8 days and then in MN differentiation medium containing purmorphamine (Pur), basic
fibroblast growth factor (bFGF) and retinoic acid (RA) for an additional 8 days. Putative MN
progenitor cells collected at day 16 were transferred onto coverslips and cultured in MN
maturation medium containing brain-derived neurotrophic factor (BDNF), ascorbic acid, cyclic
adenosine monophosphate (¢cAMP) and insulin-like growth factor 1 (IGF-1) for another 16 days.
(b) Representative immunofluorescence images showing Tujl+ and HB9+ cells at day 32. (c-e)
Bar plots showing percentages of HB9+ (¢) and Tuj1+ (d) cells and percentages of HB9+ cells in
Tujl+ cells (e) at day 32. Data represent the mean + s.e.m. with n = 3. P-values were calculated
using the Student’s paired sample #-test. **, P < 0.01.
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Fig. S8. (a) Immunofluorescence images showing total B1 integrin in undifferentiated hPSCs on
smooth (R, = 1 nm) and nanorough (R, = 200 nm) glass substrates after 48 hr of culture. (b) Bar
graphs showing quantitative results of normalized total B1 integrin for Oct3/4+ hPSCs cultured
on substrates with different nanoroughness as indicated. Error bars represent + s.e.m. with n =
10. P-values were calculated using the Student’s paired sample #-test. ns, P> 0.05.
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Fig. S9. Subcellular analysis of focal adhesion (FA) in hPSCs cultured on smooth (R, = 1 nm)
and nanorough (R, = 200 nm) glass substrates.
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Fig. S10. Representative immunofluorescence images showing nanoroughness-dependent
subcellular localization of YAP in hPSCs at day 2 and PAX6+ NEs derived from hPSCs at day 8
on smooth (R, = 1 nm) and nanorough (R, = 200 nm) glass surfaces under different drug
treatments as indicated.
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Fig. S11. Immunofluorescence images showing actin CSK (green), including cap actin (left
panels) and basal actin (right panels) filament organization, in Oct3/4+ hPSCs cultured on
smooth (R, = 1 nm) and nanorough (R, = 200 nm) glass substrates as indicated. The confocal
microscopy sections show the actin filament network at the apical surface (cap actin) and basal
surface (basal actin) of Oct3/4+ hPSCs cultured on smooth (R, = 1 nm) and nanorough (R, = 200
nm) glass substrates. There are thick, parallel, and highly contractile perinuclear cap actin
filament bundles observed in the hPSCs on the nanorough substrates, while well-developed basal
stress fibers were found and apical perinuclear actin cap is absence in hPSCs on the smooth
substrates.
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Fig. S12. Nanotopography-triggered signaling controls hPSC behaviors.
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