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Supplementary Figures 1 to 12

Fig. S1. Characterization of nanoengineered nanotopographic surfaces. (a) Schematic of 
nanotopography generated by RIE on glass surfaces. (b) Nanoroughness as a function of RIE 
process time. (c) AFM topographs of glass substrates before (left; Rq = 1.3 nm) and after 
(middle&right; Rq = 101 nm & 203 nm) RIE processing. (d) XPS survey spectra measured for 
glass substrates before (blue curve) and after RIE nanoetching (red curve).  (e) Merged phase-
contrast and anti-vitronectin immunofluorescence image of micropatterned glass substrate with 
vitronectin coating. (f) Normalized fluorescence intensity at the dash lines (I-III) in e. No 
significant difference in fluorescence intensity of the adsorbed vitronectin proteins was observed 
in the unprocessed smooth and RIE-processed nanorough regions.
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Fig. S2. (a&b) Photograph showing a 4-inch glass wafer with nanotopographic features (a) 
before cut and placed into tissue culture dishes (b). (c) Representative SEM images showing 
hPSCs plated on smooth (Rq = 1 nm) and nanorough (Rq = 150 nm) glass surfaces.
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Fig. S3. Representative immunofluorescence images showing temporal expression of 
pluripotency (Oct3/4; red) and neuroectodermal (PAX6; green) markers during neural induction 
of hPSCs in neural induction medium on smooth (top; Rq = 1 nm) and nanorough (bottom; Rq = 
200 nm) glass substrates as indicated.
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Fig. S4. qRT-PCR analysis for temporal expression of pluripotency (OCT4 and NANOG; a&b) 
and neuroectodermal (PAX6 and SOX1; c&d) markers during neural induction of hPSCs. hPSCs 
were cultured in neural induction medium on smooth (Rq = 1 nm) and nanorough (Rq = 200 nm) 
surfaces. Expression level of OCT4, a pluripotency marker, was reduced on both nanorough and 
smooth glass substrates at day 2. NANOG, another gene associated with pluripotency, decreased 
more significantly at both day 4 and 6 on nanorough (Rq = 200 nm) glass substrates compared 
with smooth controls (Rq = 1 nm). Genes associated with neural lineages, including PAX6 and 
SOX1, showed greater levels of expression on nanorough surfaces after day 2 when compared to 
smooth controls. Expression level of each gene was normalized to data from undifferentiated 
hPSCs. Data represent the mean ± s.e.m with n = 3. P-values were calculated using the Student’s 
paired sample t-test. *, P < 0.05; **, P < 0.01.
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Fig. S5. (a) Representative immunofluorescence images showing PAX6+ NEs and p75+ NCs 
after 8 days of culture on smooth (Rq = 1 nm) and nanorough (Rq = 100 nm & 200 nm) glass 
surfaces. (b) Percentages of p75+ NC cells derived from hPSCs at day 8 as a function of 
nanoroughness. Data represent the mean ± s.e.m. with n = 3. P-values were calculated using the 
Student’s paired sample t-test. **, P < 0.01.
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Fig. S6. (a) Representative immunofluorescence images showing Tuj1+ cells after 24 days of 
differentiation in MN differentiation medium on smooth (Rq = 1 nm) and nanorough (Rq = 200 
nm) glass substrates. (b-c) Bar plots showing normalized Tuj1+ (b) and HB9+ (c) cell numbers 
at day 24 as a function of surface nanoroughness as indicated. 
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Fig. S7. Purity and yield of motor neurons (MNs) derived from hPSCs are improved on 
nanorough substrates with a 32-day differentiation protocol. (a) Schematic diagram showing 
experimental design for sequential neural induction, patterning, and maturation of MNs from 
hPSCs. hPSCs were cultured on vitronectin-coated smooth (Rq = 1 nm) and nanorough (Rq = 200 
nm) glass substrates in neural induction medium containing the dual Smad inhibitors SB and 
LDN for 8 days and then in MN differentiation medium containing purmorphamine (Pur), basic 
fibroblast growth factor (bFGF) and retinoic acid (RA) for an additional 8 days. Putative MN 
progenitor cells collected at day 16 were transferred onto coverslips and cultured in MN 
maturation medium containing brain-derived neurotrophic factor (BDNF), ascorbic acid, cyclic 
adenosine monophosphate (cAMP) and insulin-like growth factor 1 (IGF-1) for another 16 days. 
(b) Representative immunofluorescence images showing Tuj1+ and HB9+ cells at day 32. (c-e) 
Bar plots showing percentages of HB9+ (c) and Tuj1+ (d) cells and percentages of HB9+ cells in 
Tuj1+ cells (e) at day 32. Data represent the mean ± s.e.m. with n = 3. P-values were calculated 
using the Student’s paired sample t-test. **, P < 0.01.
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Fig. S8. (a) Immunofluorescence images showing total β1 integrin in undifferentiated hPSCs on 
smooth (Rq = 1 nm) and nanorough (Rq = 200 nm) glass substrates after 48 hr of culture. (b) Bar 
graphs showing quantitative results of normalized total β1 integrin for Oct3/4+ hPSCs cultured 
on substrates with different nanoroughness as indicated.  Error bars represent ± s.e.m. with n = 
10. P-values were calculated using the Student’s paired sample t-test. ns, P > 0.05.
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Fig. S9. Subcellular analysis of focal adhesion (FA) in hPSCs cultured on smooth (Rq = 1 nm) 
and nanorough (Rq = 200 nm) glass substrates.
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Fig. S10. Representative immunofluorescence images showing nanoroughness-dependent 
subcellular localization of YAP in hPSCs at day 2 and PAX6+ NEs derived from hPSCs at day 8 
on smooth (Rq = 1 nm) and nanorough (Rq = 200 nm) glass surfaces under different drug 
treatments as indicated. 
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Fig. S11. Immunofluorescence images showing actin CSK (green), including cap actin (left 
panels) and basal actin (right panels) filament organization, in Oct3/4+ hPSCs cultured on 
smooth (Rq = 1 nm) and nanorough (Rq = 200 nm) glass substrates as indicated. The confocal 
microscopy sections show the actin filament network at the apical surface (cap actin) and basal 
surface (basal actin) of Oct3/4+ hPSCs cultured on smooth (Rq = 1 nm) and nanorough (Rq = 200 
nm) glass substrates. There are thick, parallel, and highly contractile perinuclear cap actin 
filament bundles observed in the hPSCs on the nanorough substrates, while well-developed basal 
stress fibers were found and apical perinuclear actin cap is absence in hPSCs on the smooth 
substrates.
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Fig. S12. Nanotopography-triggered signaling controls hPSC behaviors.


