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I. Reconstruction accuracy versus signal noise ratio, sparsity of object and imaging 
resolution.

The reconstruction accuracy of metamaterial-based compressive spatial-spectral transformation 
(CSST) is studied numerically under different condition of object sparsity, signal noise ratio and imaging 
pixel size. 

The tuned parameters are 
(1) Object Sparsity: number of non-zeros in reconstructed imaging, ranges from 5 to 50 with a step of 

2; 
(2) Signal Noise Ratio: 10dB to 80dB. Step: 10dB.
(3) Imaging Pixel Size: 6nm and 10nm. 
In addition, the total number of object unknowns remains the same (400 pixels).
First, an object is given as randomly switched ON (value 1) pixels on an all zeros 2D matrix. The 

number of ON pixels equals to the object sparsity. White Gaussian noise (given SNR) is added to the 
transformed spectrum measurement before reconstruction. Each data point of reconstruction accuracy is 
then computed through an average of 10 times (each time, both object and noise are randomly generated 
while SNR and Sparsity are fixed). Second, we increase the pixel size to 10nm from 6nm, which will 
increase the contrast of encoded spectrums in adjacent pixels. The total number of object unknowns 
remains the same (400 pixels). Thus, image has relative lower physical resolution (20nm) and larger field 
of view (200nm  200nm). It is shown that increasing pixel size will either help reconstruct a less sparse ×
object or improve reconstruction accuracy in a noisier situation. It should also be noted that increasing 
pixel size will give larger errors in pixelating the object and the illumination patterns. The errors are not 
discussed here because the pixel size is set to be ~3-4.5 times smaller than smallest feature size of 
illumination pattern. But the error can no longer be ignored if pixel size gets larger. 

II. Dispersion of the object wave
If the scattering response of an object is wavelength dependent, the measurement equations become: 

                                                                                          (1)
𝐼(𝜆) ≈ ∆𝑥∆𝑦

𝑁

∑
𝑖,𝑗 = 1

𝑂(𝑥𝑖,𝑦𝑗,𝜆) ∙ 𝐻(𝑥𝑖,𝑦𝑗,𝜆)

A completely unknown  cannot be retrieved from above equation. Therefore, other prior-known 𝑂(𝑥𝑖,𝑦𝑗,𝜆)
information is required. Fortunately, in many practical situations, we do know some prior information of 
the object. We show two working cases here, one simplified case is that the object only consists of one 
type of particles, and then followed by a more complicated case that the object consists of multiple types 
of particles. Those cases are very similar to the case of an experimental object tagged by identical 
scattering particles (such as proteins, or biological organelles, or nano-spheres). 
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Case #1: The object is made of identical units with an unknown distribution.
In this case,  can be simplified into two functions: object distribution function and 𝑂(𝑥𝑖,𝑦𝑗,𝜆) 𝑂'(𝑥𝑖,𝑦𝑗)
response function ,𝑆(𝜆)

𝐼(𝜆) ≈ ∆𝑥∆𝑦
𝑁

∑
𝑖,𝑗 = 1

𝑂'(𝑥𝑖,𝑦𝑗) ∙ 𝑆(𝜆) ∙ 𝐻(𝑥𝑖,𝑦𝑗,𝜆) = ∆𝑥∆𝑦
𝑁

∑
𝑖,𝑗 = 1

𝑂'(𝑥𝑖,𝑦𝑗)𝐻'(𝑥𝑖,𝑦𝑗,𝜆)

where is the intensity response spectrum of a single unit. After independently measuring , one 𝑆(𝜆) 𝑆(𝜆)

can combined it with  to generate a modified illumination pattern  can then be 𝐻(𝑥,𝑦,𝜆) 𝐻'(𝑥,𝑦,𝜆).  𝑂'(𝑥,𝑦)
retrieved following the same process of non-dispersive case with the modified illumination pattern.

Case #2: The object consists of more than one type of unit (assume q types of units). 
𝑂(𝑥,𝑦,𝜆) = 𝑂'1(𝑥,𝑦)𝑆1(𝜆) + 𝑂'2(𝑥,𝑦)𝑆2(𝜆) + ⋯𝑂'𝑞(𝑥,𝑦)𝑆𝑞(𝜆)
Thus,

(𝐼𝜆)𝑀 × 1 = (𝐻'1𝑀 × 𝑁2 𝐻'2𝑀 × 𝑁2 ⋯ 𝐻'𝑞𝑀 × 𝑁2)
𝑀 × (𝑞 ∙ 𝑁2)(𝑂'1𝑁2 × 1

𝑂'2𝑁2 × 1
⋮

𝑂'𝑞𝑁2 × 1
)𝑞 ∙ 𝑁2 × 1

where to are the transfer matrix  modified by  to  according to equation [2]. 𝐻'1 𝐻'𝑞 𝐻 𝑆1 𝑆𝑞

In this case, more unknown variables are to be solved so that we may suffer from a low (𝑂'1, 𝑂'2, … , 𝑂'𝑞)𝑇

reconstruction accuracy. However, Object information  to  are still retrievable, with a moderate 𝑂'1 𝑂'𝑞

accuracy, by applying other physical constraints to the objects . For example, there (𝑂'1, 𝑂'2, … , 𝑂'𝑞)𝑇

should be no overlaps between any two sub-objects  and . 𝑂'𝑖 𝑂'𝑗

III. Multilayer Geometry
The multilayer hyperbolic metamaterial consists of alternating Ag and SiO2 thin layers. It is assumed to be 
an effective homogenous hyperbolic metamaterial. The HMM is covered by a 40nm thick Cr film, with 
20 cylindrical nanoholes. All nanoholes are identical. The hole diameter is 10nm and the hole depth is 
40nm. 

IV. Transformation Matrix. 
The transformation matrix is calculated from the illumination profile of a single nanohole and a known 
distribution of multiple identical nanoholes. The image area is pixelated to 20 20 pixels. For each ×
wavelength channel, the structured illumination pattern is calculated as a linear superposition of 
illumination profile from all nanoholes. The matrix has size of 200 400 (for one polarization) and 400×

400 (for two polarizations). Wavelength is measured through 400nm to 1200nm, with 4nm per step. ×

V. Number of Nanoholes 
Approximately, every nanohole represents a “1D” sampling of a 2D object from a given projection angle. 
If there were enough nanoholes to sample an object from every projection angle, the transformation from 
object to spectrum through CSSTM is then close to a discrete Radon transformation (like a computational 
tomography). In this exemplary compressive sensing case, only 20 random holes (therefore, 20 project 
angles for our 20 x 20 pixels image) are selected in our demonstration. 
In principle, adding more nanoholes potentially increases the number of projection angles leading to more 
independent measurements and a larger imaging size. However, the number of measurements of CSSTM 

(3)

(2)

(4)



are actually limited by its total number of wavelength channels (400 measuring points for 2 polarization) 
in that case. 
VI. Multiple Nanohole Distribution
The rule of nanohole distribution is that no two positions within the area of interest have the same 
wavelength coding. This could be mathematically analyzed by the mutual coherence [reference 35 from 
the manuscript] of the sensing matrix made by all the illumination patterns. 
Given an imaging area of interest 120nm×120nm (or 200nm×200nm), nanoholes are randomly placed on 
the bottom side of the hyperbolic multilayer within a given area 1.7μm×1.7μm. The distance between any 
two holes should be larger than the illumination pattern resolution: 27nm. For a given distribution, one 
can calculate the its sensing matrix. The code selects a sensing matrix that has minimum mutual 
coherence from 104 random distributions those nanoholes. 

VII. Software
We use COMOSL 4.1a to perform full wave simulation of hyperbolic metamaterial and Matlab 2014b to 
perform imaging reconstruction via sparse based algorithms. The sparse based algorithm used in this 
work is l1-ls26.



Supplementary Figures

Figure S1. Beam width at HMM and air interface versus unit cell size of HMM. HMM consists of alternating layers 
of Ag and SiO2. The filling ratio: 0.5. Total thickness of HMM: 120 nm. Unit Cell Size: 0 nm (effective media 
theory), 10 nm, 20 nm and 30 nm. 



Figure S2.  Object illuminated by different wavelengths and two polarizations. (a) Wavelength: 500nm, 
polarization: 0 degree. (b) Wavelength: 685nm, polarization: 0 degree. (c) Wavelength: 1135nm, 
polarization: 0 degree. (d) Wavelength: 500nm, polarization: 90 degree. (e) Wavelength: 685nm, 
polarization: 90 degree. (f) Wavelength: 1135nm, polarization: 90 degree. (g-i) Diffraction-limited image 
of illuminated objects under 500nm, 685nm and 1153nm, respectively (0o polarization)



Figure S3. CSST reconstruction results with various noise conditions.  Two objects have different 
sparsity conditions: The first row ‘Smile Face’ object and second row ‘Two Dots’ have 8 and 2 non-zero 
pixels (out of 400 total pixels), respectively. White Gaussian noise is added to the computed spectrum 
before reconstruction. Column 2 to 4 show reconstructed images of these two objects under different 
signal noise ratio [30dB, 20dB, 10dB]. Scale Bar: 10nm


